Quantum Black Holes theory & phenomenology

Francesca Vidotto

II FLAG MEETING Trento - June 7th, 2016

Netherlands Organisation for Scientific Research

Radboud University Nijmegen

- (1971).
- ⁶ Bassi, P., Clark, G., and Rossi, B., Phys. Rev., 92, 441 (1953).
- ⁷ David, F. N., Biometrika, 34, 299 (1947).
- ⁸ Weekes, T. C., Nature phys. Sci., 223, 129 (1971).

Black hole explosions?

QUANTUM gravitational effects are usually ignored in calculations of the formation and evolution of black holes. The justification for this is that the radius of curvature of spacetime outside the event horizon is very large compared to the Planck length $(G\hbar/c^3)^{1/2} \approx 10^{-33}$ cm, the length scale on which quantum fluctuations of the metric are expected to be of order unity. This means that the energy density of particles created by the gravitational field is small compared to the space-time curvature. Even though quantum effects may be small locally, they may still, however, add up to produce a significant effect over the lifetime of the Universe $\approx 10^{17}$ s which is very long compared to the Planck time $\approx 10^{-43}$ s nations of the f_i and the f_i :

$$p_i = \sum_i \{ \alpha_{ij} f_i + \beta_{ij} \overline{f}_j \}$$
 and so on

The β_{ij} will not be zero because the time dependence of the metric during the collapse will cause a certain amount of mixing of positive and negative frequencies. Equating the two expressions for ϕ , one finds that the b_i , which are the annihilation operators for outgoing scalar particles, can be expressed as a linear combination of the ingoing annihilation and creation operators a_i and a_i^+

$$b_i = \sum_i \{ \bar{\alpha}_{ij} a_j - \bar{\beta}_{ij} a_j^+ \}$$

Thus when there are no incoming particles the expectation value of the number operator $b_i^{\dagger}b_i$ of the *i*th outgoing state is

$$< 0_{-} |b_{i}^{+}b_{i}| 0_{-} > = \sum_{i} |\beta_{ii}|$$

The number of particles created and emitted to infinity in a gravitational collapse can theref

 $m^3 \sim 10^{50}$ Hubble times, while $m^2 \sim Hubble time$

Nature

the collapse of the symmetric. The angular dependence of the solution of the wave equation can then be expressed in terms of the spherical harmonics Y_{im} and the dependence on retarded or advanced time u, v can be taken to have the form $\omega^{-1/2} exp$ ($i\omega u$) (here the continuum normalisation is used). Outgoing solutions $p_{im\omega}$ will now be expressed as an integral over incoming fields with the same l and m:

For m ~10²⁴ Kg,

$$p_{\omega} = \int \left\{ \alpha_{\omega \omega'} f_{\omega'} + \beta_{\omega \omega'} \bar{f}_{\omega'} \right\} d\omega'$$

(The *lm* suffixes have been dropped.) To calculate $\alpha_{\omega\omega'}$ and $\beta_{\omega\omega'}$ consider a wave which has a positive frequency ω on I^+ propagating backwards through spacetime with nothing crossing the event horizon. Part of this wave will be scattered by the curvature of the static Schwarzschild solution outside the black halo and will and up on I^- with the same frequency ω

Beckenstein⁶ suggested on thermodynamic grounds that some multiple of κ should be regarded as the temperature of a black hole. He did not, however, suggest that a black hole could emit particles as well as absorb them. For this reason Bardeen, Carter and I considered that the thermodynamical similarity between κ and temperature was only an analogy. The present result seems to indicate, however, that there may be more to it than this. Of course this calculation ignores the back reaction of the particles on the metric, and quantum fluctuations on the metric. These might alter the picture.

Further details of this work will be published elsewhere. The author is very grateful to G. W. Gibbons for discussions and help.

S. W. HAWKING

31

Department of Applied Mathematics and Theoretical Physics

LOOP QUANTUM COSMOLOGY INSPIRATION

- Effective repulsive force
 - Planck density
- Size ≫ Planck length

$$\blacksquare \quad r_b \sim \frac{m}{m_P} \ \ell_P$$

- Quantum Tunneling
 - superposition

See works by Barrau, De Lorenzo, Haggard, Christodoulou, Vilensky Rovelli, Speziale, Vidotto...

See also related works by Bianchi, Smerlak, Perez, Gosh, Frodden, Gambini, Pullin...

Bonanno, Reuter hep-th/0002196 Alkofer, D'Odorico, Saueressig, Vidotto 1503.06472

Quantum Gravity Phenomenology

contracting solution

NON-SINGULAR BLACK HOLES

NON-PERTURBATIVE EFFECT

Effective theory: quantum repulsion Quantum effects piling outside the horizon

TIME DILATATION

Bounce time ~ M ~ ms for M $_{\odot}$ Asymptotic time ~ M² ~ 10⁹ for M $_{\odot}$

$\blacksquare LIFETIME \sim M^2$

to be compared with the evaporation time $\sim M^3$ (no information paradox)

Upper limit:

Vidotto, Rovelli 1401.6562

Firewall argument (Almheiri, Marolf, Polchinski, Sully):"something" unusual must happen before the Page time (~ 1/2 evaporation time)

 \Rightarrow the hole lifetime must be shorter or of the order of $\sim \mathbf{m}^3$

Lower limit:

Haggard, Rovelli 1407.0989

For something quantum to happens, semiclassical approximation must fail. Typically in quantum gravity: high curvature Curvature $\sim (L_P)^{-2}$ Small effects can pile up: small probability per time unit gives a probable effect on a long time! Typically in quantum tunneling: Curvature $\times (time) \sim (L_P)^{-1}$ $\frac{1}{m^2} T_b \sim 1$

 \Rightarrow the hole lifetime must be longer or of the order of $\sim m^2$

A PROCESS AND ITS AMPLITUDE

In GR, distance and time measurements are field measurements like any other one:

they are part of the **boundary data** of the problem

Boundary values = geometry of box surface = distance and time separation of the gravitational field of measurements

BOUNDARY STATE

- $\blacksquare Boundary: B_3 \cup B_3 \quad (joined on a S_2)$
- Each B₃ can be triangulated by 4 isosceles tetrahedra
- The bulk can be approximated to first order by two 4-simplices joined by a tetrahedron

BLACK HOLE LIFETIME

$$W(m,T) = \sum_{\{j_{\ell}\}} w(m,T,j_{\ell}) \sum_{\{J_{n}\},\{K_{n}\},\{l_{\ell}\}} \left(\bigotimes_{n} N^{J_{n}}_{\{j_{n}\}}(\{\nu_{n}\},\{\alpha_{n}\}) f^{J_{n},K_{n}}_{\{j_{n}\}\{l_{n}\}} \right) \left(\bigotimes_{n} i^{K_{n},\{l_{n}\}} \right)_{\Gamma}$$

$$w(m,T,j_{\ell}) = c(m) \prod_{\ell} d_{j_{\ell}} e^{-\frac{1}{2\eta_{\ell}} (j_{\ell} - \frac{(2\eta_{\ell}^2 - 1)}{2})^2} e^{i\gamma\zeta_{\ell} j_{\ell}} \ , \ \eta_{\ell}^2 \sim m^2$$

$$T \sim m^2$$

$$f_{\{j_{\mathbf{n}}\}\{l_{\mathbf{n}}\}}^{K_{\mathbf{n}},J_{\mathbf{n}}} \equiv d_{J_{\mathbf{n}}} i \frac{J_{\mathbf{n}},\{j_{\mathbf{n}}\}}{\{\overrightarrow{p}_{\mathbf{n}}\}} \left(\int dr_{\mathbf{n}} \frac{\sinh^{2}r_{\mathbf{n}}}{4\pi} \overrightarrow{\bigotimes_{\ell \in \mathbf{n}}} d_{j_{\ell}l_{\ell}p_{\ell}}(r_{\mathbf{n}}) \right) i \frac{K_{\mathbf{n}},\{l_{\mathbf{n}}\}}{\{\overleftarrow{p}_{\mathbf{n}}\}} d_{K_{\mathbf{n}}}$$

$$\int_0^{\boldsymbol{\tau(m)}} P(m,T) \ dT = 1 - \frac{1}{e}$$

• exploding now: $m(t)|_{t=t_H}$ $R = \frac{2Gm}{c^2}$

LOW ENERGY: size of the source ≈ wavelength λ_{predicted}
 HIGH ENERGY: energy of the particle liberated ≈ Tev

- fast process (few milliseconds?)
- the source disappears with the burst
- very compact object: big flux $E = mc^2$

Barrau, Rovelli, Vidotto 1409.4031

Quantum Gravity Phenomenology

• exploding now:
$$m = \sqrt{\frac{t_H}{4k}} \sim 1.2 \times 10^{23} \text{ kg}$$
 $R = \frac{2Gm}{c^2} \sim .02 \text{ cm}$

LOW ENERGY: size of the source \approx wavelength $\lambda_{predicted} \gtrsim .05$ cm **HIGH ENERGY:** energy of the particle liberated $\approx Tev$

- fast process (few milliseconds?)
- the source disappears with the burst

• very compact object: big flux $E = mc^2 \sim 1.7 \times 10^{47} \text{ erg}$

Barrau, Rovelli, Vidotto 1409.4031

Quantum Gravity Phenomenology

Barrau, Bolliet, Vidotto, Weimer 1507.1198

■ shorter lifetime — smaller wavelength

Low energy channel

High energy channel

- detection of arbitrarily far signals
- better single-event detection

- Ĩ
- different scaling

THE SMOKING GUN: DISTANCE/ENERGY RELATION

Low energy channel

distant signals originated in younger and smaller sources

Quantum Gravity Phenomenology

THE SMOKING GUN: DISTANCE/ENERGY RELATION

High energy channel

$$M \sim M_H \sim t$$
 $t \sim 0.3 g_*^{-\frac{1}{2}} T^{-2}$

THE SMOKING GUN: DISTANCE/ENERGY RELATION

$$\lambda_{obs}^{other} = (1+z)\lambda_{emitted}^{other} \longrightarrow \lambda_{obs} \sim \frac{2Gm}{c^2}(1+z) \sqrt{\frac{H_0^{-1}}{6\,k\Omega_\Lambda^{1/2}}} \sinh^{-1}\left[\left(\frac{\Omega_\Lambda}{\Omega_M}\right)^{1/2}(z+1)^{-3/2}\right]$$

Quantum Gravity Phenomenology

Quantum Gravity Phenomenology

INTEGRATED EMISSION

Barrau, Bolliet, Vidotto, Weimer 1507.1198

 $\tau \sim m^2$

Quantum Gravity Phenomenology

GeV FERMI EXCESS

Schutten, Barrau, Bolliet, Vidotto, to appear

Number of secondary gamma-rays is higher than the number of primary gamma-rays, but their spectral energy density is much lower.

QUANTUM PRIMORDIAL BLACK HOLES AS DARK MATTER

Structure formation

Raccanelli, Chluba, Cholis, Vidotto WIP

First stars & Supermassive black holes

Bambi, Freese, Vidotto WIP

Primordial black holes inside first-generation stars can provide the seeds for supermassive black holes.

Quantum Gravity Phenomenology

- the white hole should eject particles at the same temperature as the particles that felt in the black hole
- limited horizon due to absorption
 ~ 100 million light-years / z=0.01

Short Gamma Ray Burst ?

telescopes spanning large surfaces needed (CTA?)

Barrau, Rovelli, Vidotto 1409.4031

FAST RADIO BURSTS

Unknown source!

Short

- Observed width ~ milliseconds
- No Long GRB associatedNo Afterglow
- PunctualNo repetition
- Enormous flux density
 Energy ≈ 10³⁸ erg
- Likely Extragalactic
 Dispersion Measure: z≤0.5
- 10⁴ event/day
 A pretty common object?
- Circular polarization
 Intrinsic
 Quantum Gravity Phenomenology

		Barrau, Rovelli, Vidotto 1409.4031
λ≈20 cm		size of the source $\approx \lambda_{predicted} \gtrsim .02 \text{ cm}$
Short		
Observed width ~ milliseconds		■fast process
No Long GRB associated		
■ No Afterglow		Very short GRB? gravitational waves?
Punctual		
No repetition		the source disappears with the burst
 Enormous flux density Energy ≈ 10³⁸ erg 		• very compact object $\rightarrow 10^{47}$ erg
Likely Extragalactic		
 Dispersion Measure: z≤0.5 		peculiar distance/energy relation
 10⁴ event/day A pretty common object? 	Are they	bouncing Black Holes?
 Circular polarization Intrinsic 		

Quantum Gravity Phenomenology

LIST OF FAST RADIO BURSTS

name	date	RA	dec	DM	width	peak	notes
FRB 010724	2001/07/24	01h18′	-75°12′	375	4.6	30	"Lorimer Burst"
FRB 010621	2001/06/21	l 8h52′	-08°29′	746	7.8	0.4	
FRB 110220	2011/02/20	22h34'	-12°24′	944.38	5.6	1.3	
FRB 110627	2011/06/27	21h03′	-44°44′	723.0	<1.4	0.4	
FRB 110703	2011/07/03	23h30′	-02°52′	1103.6	<4.3	0.5	
FRB 120127	2012/01/27	23h15′	-18°25′	553.3	<1.1	0.5	
FRB 011025	2001/10/25	l 9h07′	-40°37′	790	9.4	0.3	
FRB 121002	2012/10/02	18h14′	-85°II′	1628.76	2.1;3.7	0.35	double pulse 5.1 ms apart
FRB 121002	2012/10/02	18h14'	-85°11'	1629.18	<0.3	>2.3	
FRB 121102	2012/11/02	05h32′	33°05'	557	3.0	0.4	by Arecibo radio telescope
	2015	05h32'~	33°05'~	557~			10 repeat bursts: 6 bursts in 10 minutes, 3 bursts weeks apart.
FRB 131104	2013/11/04	06h44′	-51°17′	779.0	<0.64	1.12	'near' Carina Dwarf Spheroidal Galaxy
FRB 140514	2014/05/14	22h34'	-12°18′	562.7	2.8	0.47	21 \pm 7 per cent (3 σ) circular polarization
FRB 090625	2009/06/25	03h07'	-29°55′	899.6	<1.9	>2.2	
FRB 130626	2013/06/26	l 6h27'	-07°27'	952.4	<0.12	>1.5	
FRB 130628	2013/06/28	09h03'	+03°26'	469.88	<0.05	>1.2	
FRB 130729	2013/07/29	13h41'	-05°59'	861	<4	>3.5	
FRB 110523	2011/05/23	21h45'	-00°12'	623.30	1.73	0.6	700-900 MHz at Green Bank radio telescope, detection of both circular and linear polarization.
FRB 150418	2015/04/18	07h16'	-19° 00′	776.2	0.8	2.4	Detection of linear polarization. The origin of the burst is disputed.

Quantum Gravity Phenomenology

1. **BLACK HOLE** can be singularity free

and they can tunnel into a white hole in a time $\sim m^2$ * complete calculation available in LQG

- 2. **PHENOMENOLOGY** depends on mass and lifetime
 - * new experimental window for quantum gravity
 - IR radio & TeV
 - direct detection & diffuse emission
 - peculiar energy distance relation
- 3. PRIMORDIAL BLACK HOLES

new features

what else can change íf black holes explode thís way?

MAIN PAPERS

Planck Stars	Planck stars Carlo Rovelli, Francesca Vidotto Int. J. Mod. Phys. D23 (2014) 12, 1442026
Classical metric	Black hole fireworks: quantum-gravity effects outside the horizon spark black to white hole tunneling Hal Haggard, Carlo Rovelli Phys. Rev. D.92.104020.
	Improved Black Hole Fireworks: Asymmetric Black-Hole-to-White-Hole Tunneling Scenario Tommaso De Lorenzo, Alejandro Perez arXiv:1512.04566
Phenomenology	Planck star phenomenology Aurelien Barrau, Carlo Rovelli. Phys. Lett. B739 (2014) 405
	Phenomenology of bouncing black holes in quantum gravity: a closer look Aurélien Barrau, Boris Bolliet, Francesca Vidotto, Celine Weimer JCAP 1602 (2016) no.02, 022
Fast Radio Bursts	Fast Radio Bursts and White Hole Signals Aurélien Barrau, Carlo Rovelli, Francesca Vidotto. Phys. Rev. D90 (2014) 12, 127503
LQG lifetime calculation	Computing a Realistic Observable in Background-Free Quantum Gravity: Planck-Star Tunnelling-Time from Loop Gravity Marios Chistodoulou, Carlo Rovelli, Simone Speziale, Ilya Vilensky. ArXiv: 1605.05268