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Hintroduction & Outline

The increasingly precise CMB measurements by Planck mission in
combination with other cosmological date have ushered us into a precision
early Universe cosmology era:

dlog P
ng = <2275 11— 0.968 + 0.006 Planck 2015
dlog k
r <0.11
- Planck+WP
o Planck-+WP+highL
g Planck+WP-+BAO

Natural Inflation
Power law inflation

Low Scale SSB SUSY

R? Inflation

V x ¢?/3

V x ¢

V x ¢?

V x ¢3

| N,=50 0.5 1 15

0.94 0.96 0.98 1.00 e N.=60 L3
Prmordil T (1) ==Hilltop Gauged M-flation Ashoorioon & Sheikh-Jabbari

(2009, “11,"13)

0.15

Tensor-to-Scalar Ratio (ro.002)
0.10

0.05

0.00

=== SB Gauged M-flation



H Introduction & Outline

® Inflation is based on QFT and GR

@® Some symmetries of low energy physics: Rotational Invariance, Lorenz Invariance

® 1 MeV < My, <10°GeV

® What if some of these symmetries are broken before or during Inflation?

® In this work we assume that EFT is valid up to M where A7, < M

@ The effect of high energy theories above M is to excite the vacuum to a rotationally
breaking excited initial state.

@ Also we shall consider the case of a preferred direction in momentum space,n.

A

Ps = P [1+ M(h)| == AT(R) = ATico(h) 1+ M(k)

A, C, ... (odd multipoles) have to be pure

M(k)=Ak-a+B(k-n)2?+Ck-n)’+...,
imaginary numbers

dipole quadrupole Octupole



B Introduction & Outline

@ Planck 2013, bounds the quadrupolar term using the bounds on NG in the context of
anisotropic inflationary models

—0.05 < B < 0.05 (95% C.L.).  model-dependent

® Kim & Komatsu (2013), doing data analysis on the Planck 2013 data
—0.03 < B < 0.033 (95% C.L.)

® We then find the signature of such excited initial states in the bispectrum

® We also find an analytic bound on parameter B

|B| < 0.06

which is comparable with the above results.
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B ROTATIONAL SYMMETRY BREAKING EXCITED INITIAL STATES

« The equation for gauge-invariant scalar perturbations

(15
* In a quasi-deSitter background

the most generic solution to the E.O.M. in the leading order in slow-roll
parameters

(1 2
o HY ) (k|r)) + B3 H (k|))|

3/2

where the Bogoliubov coefficients satisfy the Wronskian condition
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B Backreaction and bounds on |5;]

* Any excited state contains massless quanta whose positive pressure can
derail slow-roll Inflation

one can see derailing the slow-roll inflation can be avoided
0 Pnon-BD <K € po

5p;10n—BD <H 1€ po
The second equation, which is the stronger one, can be written as

> dgk L *|2 H2M2
" (271')3 ’6;3‘ < €en pl

* As a specific example, let us consider the crude model in which the modes get
excited when k/a(t) =M

B = Bo(k)
one obtains the following bound on g,

~ H Mp, H Mp,
Bolh)| 5 vET ot HM
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B Effect of an Excited State in the Power Spectra

e Scalar power Spectrum Ashoorioon, Dimopoulos, Sheikh-Jabbari & Shiu (2013)
k3 |up |2
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 Parameterization of the Parameter Space

o 1P =1 oy = cecoshxs , ff = e Pesinh

1

Let us focus on V(¢) = §m2¢2

Using the Planck normalization for the amplitude of density perturbations:

H 1
~—378x107°

My V¥s
that with the help of backreation condition, g5 < EI;/IAZ’”, yields
2
M <220 Y5

H? sinh
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B Effect of an Excited State in the Power Spectra

U Quasi-BD region, y¢ < 1 and general ¢g:
« M can be arbitrary large

 H is very close to its Bunch-Davies value

(1 Typical or large values of xys, xs = 1:

o J]/S ~ eXSSin(qos) e M < 21H

) eXS
e sinhys = 5

. ® H = HBD
* generic values of @g

» Desirable value of M =~ 21 H is obtained if g5 =

N[



The upper bound is again maximal when

B Rotational Breaking Excited Initial States:

 Parameterization and Power Spectrum
.-'5'0(11‘) = sinh (xs + €9 C’Z’) e—i(¢s+52 Ci)

0o
Pnon-BD =— —%3 /

M\*

(_

H

) < 7S
~ 2sinh” y. fm feo

O-U(k) = cosh (XS + &9 Cl?;) ci('\{v‘s-i'-ég CE)

d*k

yawo

> (xs) f fen -

75,

\14

nr_

m
m ~ ]
fM + 1202
m << M
. 1 [m
Xilgloofé—? o 5 2€2Erﬁ(V )
lim 1L =1—cos2p,,

Xs—% 2sinh? X s

_7'('
905—2



B Rotational Breaking Excited Initial States:

/ : : ¢ 1
( M )4 - 32m2 en®s] lim > 0
Mp1) = ~gsinh? Xsf% feo o Xs /s s X

This bound restricts us to consider ultra-low scale inflation with increasing XS

% Maximally Occupied Vacuum Xxs > 1

« In this limit the factor B could be read expanding the s factor in €2 and 02

B =¢3(2—4e s 4 4¢ s cot® ;)

. _— .')
4305 (—2e= s cot g, ese? p + 2cot g, )

* In the xs > lwhere wsﬁg
A=0 B ~ 2¢&9 C =0

« Now from the observation constraint on B, the following constraint is obtained

E
on ez —0.015 < €5 < 0.0165 (95% C.L.)

do remains indefinite in this regime from the constrains on the quadrupole
moment.
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H Rotational Breaking Excited Initial States:
* Bispectrum:

One can compute the bispectrum using the in-in formalism:

3 -\ 4
. . - H
(G, G, G, ) = —1(2m)%0° (; ki) (%) i3

Odr o
<) [a(T)dTszl(O, r)]
x [a(’r) 6,052(0,7)] [a(T) Ner (o,r)]
+permutations + c.c. , (59)

where the Whightman function is

H? ug(7) ui (')
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"M Rotational Breaking Excited Initial States:

2HS 3 k2 k2 : ) )
(G, G, Gr,) = (2m)%6° (Z Ei) — G 1?‘(&’:‘ - 6z) (IL g, + I15,) + e
=t/ $2M2 ] (2k3) #=i][(ez, - B;) (118, - [[of) +ec (62
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® There are two types of enhancement in presence of excited initial states:
» Flattened configurations, k; + k, ~ ks ky " k2 X Chen, et al (2005)

This enhancement is lost after projection on the 2D CMB surface! Holman & Tolley (2007)

* Local configuration, ki ~ ko > k3 Agullo & Parker (2010)
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B Rotational Breaking Excited Initial States:

i . ey o _5 ‘<Ck1<’ko<k3>
using the definition fxi, = 6 (0,2 G, G

1>7
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Expanding in terms of €2 anddz and in the Xs > 1,¢s = 5

fNL =~ fa + fNiE2 + fNL<52
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B Rotational Breaking Excited Initial States:

k1~ ko > k3
¢Ez mwgl—l—w

0 <y Sm—0

cos? Vi, + cos? @bgg ~ cos’ §

k
INL = §€—1 [1+€2 <4COS2¢E —2C0820>]
3 k’3 1

For given # the maximum enhancement occurs when ¢; =0

T

The minimum occurs when ¥, = 5

This variation enhances for the local configuration that is coplanar with n



B Rotational Breaking Excited Initial States:

El corresponding to shortest scales probed by Planck and /23 corresponding to
largest scale at which the cosmic variance is negligible, [ ~ 10. For ¢ ~ 0.01 and

g2 >~ 0.0165

max ._
NI~ 4.3

min 4 3

ks

. _’3)
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B Rotational Breaking Excited Initial States:
% Purely anisotropic Initial Condition, xs < 1

Inthiscase: A =0 B = —2cospges C=0

. . . . s
* One intriguing case is whenys = 1 mmp> B =0 ?ec;r?]ocl:nngom quadrupole

« Still to be able to to trust the expansion inc2 and 6, we assume 0 < g2 S'1
We also set

— f=1,p=1

O=r1/4,y=r1/4

bipolar bispectrum that can reach fn. ~ 20 — 30



Conclusion

B Effect of new physics or pre-inflation can be encoded as the excited states at
the new physics hypersurface, _*_ -y

a(T)

B If the new physics or pre-inflation evolution break the rotational invariance by
picking up a preferred direction in such an excited states, the resulted power
spectrum can turn out to be anisotropic.

B \We constrained the form of such rotational breaking excited initial state using
the CMB observation.

B We also found the signature of the model in the bispectrum.

B In general the form of the bispectrum will depend on the direction of the
momenta.

B The local non-gaussianity is enhanced in general.



Conclusion

B |In the maximally excited initial state, the maximum of local NG occurs when
the short wavelength modes are collinear or anti collinear with the preferred
direction. The minimum occurs when these modes are perpendicular to the
preferred direction.

B |n the purely anisotropic initial condition for the specific configuration where

¢s = m/4the bispectrum becomes bipolar where /i = 20 — 30 | This extremely
anisotropic feature of the non-Gaussianity will be the signature of the model in
this region of parameter space.
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B Bound on the quadrupole moment, 5:

So we have an anisotropic power spectrum

P(k) = Piso(k) (1+ Bl - 2)?)

As mentioned the strongest constraint was provided by Kim & Komatsu (2013)

—0.03 < B < 0.033 (95% C.L.)

ng the data analysis techniques on the Planck 2013 data. However there is a
y to obtain a bound on B analytically:
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B Bound on the quadrupole moment, 5:

Stmstrm = ~Om/ m+2 X b1 g, (C1HI4 12 +m?)
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The effect of quadrupolar term in the primordial spectrum is correlating @y, with alib{or 1},mi0{o£ 1rand

ai+0{or 1},m=+0{or 1}



B Bound on the quadrupole moment, 5:

Assuming B(k) = B.

A(Ilm;lm) Ackerman, Carroll & Wise (2007)
<a’lm azkm>0

B. [ . 5 20% + 21 — 2m? — 1
= — 0. + (3 0, —1

g |50+ (Bcos ) @@ <3

Q|m are independent random variables

* 0
<alm alm>0 — Cl 5ll’ 5mm’

AC,  AC

c, P

=~ [sin 0 + (3 cos“ 0, — 1) 3020 = 1)(2 1 3)

We have not seen any deviation from cosmic variance at large I's

AC, < AC,
C, T

S.V.

Planck has probed up to [ ~ 2500. At large I's we also the bound on B does not depend on 0.

1B.| <0.06



