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Matter coupled to gravity described by general relativity:

Linearized general relativity can be regarded as an 
effective field theory  valid up to the reduced Planck mass

Perturbative linearized general relativity 

The theory is non-renormalizable, but some predictions are 
still possible.



Unitary in perturbative quantum field theory 

•  Follows from the conservation of probability in quantum 
mechanics. 

•  Implies that amplitudes do not grow with energy. 
 
•  One of the few theoretical tools in quantum field theory to get 

information about the parameters of the model. 

•  Well known example is the bound on the Higgs boson’s mass in 
the Standard Model (m<790 GeV). 



Let us consider gravitational scattering of the particles 
included in that model (s-channel, we impose different in and 
out states) (Han & Willenbrock 2004, 

xc & Atkins 2011)
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graviton	

ma=er	ma=er	

At what energy scale does the EQG breakdown? 



Let us look at J=2 partial wave

One gets the bound:

For large N, unitarity can be violated well below the Planck 
mass.  From the J=0 partial wave, one gets

6	What is going on?

At what energy scale does the EQG breakdown? 



Self-healing of unitarity 
•  Aydemir, Anber & Donoghue argued that the effective theory heals 

itself.
•  First let’s calculate the leading quantum corrections to the previous 

amplitude (still working in linearized GR in flat space-time)

•  Insert any matter in your model in that loop (gravitons are suppressed, 
but can be included). 

•  Typically there is more matter than gravitational degrees of freedom, 
we can thus ignore gravitons in that loops for energies below the 
Planck mass.

•  Honest calculation: regularized using dim-reg and absorb divergencies 
in R^2 etc.

•  Obviously the theory is still not renormalizable, but that’s not an issue 
for an effective field theory.
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FIG. 1: Vacuum polarization graph.

addition there are a wide variety of works in non-local models (see for example [15] and references therein) which
however are of a quite different character than the quantum effects that we study.
The plan of the paper is as follows. In Sec. 2 and 3, we first treat simple perturbation theory around flat space.

This is useful to show the nature of the non-locality in time, and to show how one obtains causal behavior in the
equations of motion. We then provide a non-linear form of this result, matching to the heat kernal methods in Sec.
4, with the corresponding non-linear FLRW equations of motion being displayed in Sec. 5. The expanding universe
emerging from the quantum regime is studied in Sec. 6, while Sec. 7 is devoted to the exploration of singularity
avoidance in a collapsing phase. Comments, caveats and further work are discussed in the summary.

2. PERTURBATIVE ANALYSIS

We first start with a perturbative treatment of the graviton vacuum polarization. This provides us with a basis for
later treatment of the non-linear equations, separating the non-local effect from the renormalization of the local terms
in the action. It also allows us to explore the impact of using the appropriate field theoretic formalism to generate
causal behavior for cosmology in the next section.
We compute perturbatively the effective action for a massless free scalar field minimally coupled to gravity with

the Lagrangian

L =
1

2

√
ggµν∂µφ∂νφ . (2)

After performing the functional integral, the operator of interest reads

D =
√
g(✷)

=
√
ggµν

(
∂µ∂ν − Γα

µν∂α
)
. (3)

The last equality holds because the covariant d’Alembertian acts on a scalar field. The metric is expanded around
flat space (we use the mostly minus signature)

gµν = ηµν + hµν . (4)

Likewise, the differential operator can be expanded in powers of hµν to yield

D = ∂2 + δ(1) + δ(2) +O(h3) (5)

where,

∂2 = ηµν∂µ∂ν , δ(1) = −hµν∂µ∂ν +
1
2h∂

2 − ηµνΓα
µν∂α (6)

δ(2) = hµνhα
ν ∂µ∂α − 1

2hh
µν∂µ∂ν +

(
1
4hµνhµν + 1

8h
2
)
∂2 +

(
hµν + 1

2hη
µν
)
Γα
µν∂∂ − ηµνΓα

µν
∂α . (7)

The indices are raised and lowered using the flat metric, and we have defined

Γα
µν =

1

2

(
∂µh

α
ν + ∂νh

α
µ − ∂αhµν

)
(8)

Γα
µν

= −
1

2
hαβ (∂µhνβ + ∂νhµβ − ∂βhµν) . (9)

To find the effective action, we take the logarithm of the differential operator and expand in powers of hµν to find

Tr(logD) = Tr(log ∂2) + Tr

(
Gδ(1) +Gδ(2) −

1

2
Gδ(1)Gδ(1)

)
+O(h3) . (10)



Self-healing of unitarity 

•  In the case of linearized gravity coupled to the SM, resum:

•  in the large N limit, keeping NGN small. One obtains a 
resummed graviton propagator

•  One can check explicitly 
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Self-healing of unitarity non-minimal coupling 
•  One can also resum the infinite series of 1-loop polarization diagrams

•  In the large ξ and N limits but keeping N ξGN small, I get

•  The dressed amplitude fulfills exactly 

XC & Casadio 2014
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Self-healing yes, but… 
•  In linearized GR, the effective theory self-heals itself.

•  In the large N limit keeping N GN small one finds poles in the 
resummed graviton propagator: sign of strong interaction.

•  The positions of these poles depend on the number of fields

•  One finds

•  Complex pole: EQG breaks down and potentially well below the 
Planck scale.
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Poles and Quantum Black Holes? 
•  It is tempting to interpret these poles as black hole precursors. 

•  In the SM

•  We thus find

•  Using

•  The first one corresponds to a state with mass 

and width 

•  Note that the 2nd pole has the wrong sign for particle: it is a ghost
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Analogy to QCD 

•  Our interpretation is similar to the sigma-meson case which can be 
identified as the pole of a resummed scattering amplitude in the 
large N limit of chiral perturbation theory. 

•  This resummed amplitude is an example of self-healing in chiral 
perturbation theory.

•   In low energy QCD (chiral perturbation theory), the position of the 
pole does correspond to the correct value of the mass and width of 
the sigma-meson.
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•  Remember that the 2nd pole has the wrong sign between the mass and 
width terms for a particle: it is a ghost.

•  Acausal effects: connection to black hole information paradox? Could be 
canceled by e.g. Lee and Wick’s mechanism.

•  Acausal effects can be replaced by non local effects

by reinterpreting the log term (more later).

•  Can these effects soften singularities?
13	

Acausal versus nonlocal effects 



•  With our interpretation in mind, an interesting picture emerges. 

•  Self-healing in the case of gravitational interactions implies unitarization 
of quantum amplitudes via quantum black holes. 

•  As the center of mass energy increases so does the mass of the black hole 
and it becomes more and more classical. 

•  This is nothing but classicalization.

•  What we call Planck scale (first QBH mass/cut off for the EFT) is now a 
dynamical quantity which depends on the number of fields. 

•  The effective theory certainly breaks down at the Planck scale. 

•  Self-healing makes the link between several concepts that had been 
proposed previously.

14	

Self-healing & Classicalization 



Once again perturbative unitarity 
•  Let’s think about perturbative unitarity again.

•  We are taught that a breakdown of perturbative unitarity is a sign of 
new physics or strong dynamics.

•  In the case of quantum gravity in the large N, we have identified the 
strong dynamics as quantum black holes: this is not a surprise.

•  More surprising is the case of a large nonminimal coupling of 
scalars to R, here we found a resummed propagator that does not 
have poles beyond the one at q2=0.

•  Unitarity is restored by the self-healing mechanism without new 
physics or strong dynamics. 
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Effec%ve	Quantum	Gravity	

•  We thus have an EFT valid up to a scale 

•  The leading order terms are 
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renormalization scale needs to be adjusted to match the number of particles included in the

model. Indeed, to a good approximation the real part of the complex pole is of the order of

|Re q2| ⇠
r

120⇡

NGN
(5)

which corresponds to the energy scale M? at which the e↵ective theory breaks down. Indeed,

the complex pole will lead to acausal e↵ects and it is thus a signal of strong quantum

gravitational e↵ects which cannot be described within the realm of the e↵ective theory. We

should thus pick our renormalization scale µ of the order of M? ⇠ |Re q2|. We have

q

2
2 ⇡ ± 1

GNN

120⇡

W (�1)
⇡ ⌥(0.17 + 0.71 i)

120⇡

GNN
, (6)

and we thus find the mass of the complex pole:

m2 = (0.53� 0.67 i)

r
120⇡

GNN
. (7)

As emphasized before, the mass of this object depends on the number of fields in the theory.

The corresponding wave has a frequency:

w2 = q

0
2 = ±

r
~q2.~q2 + (0.17 + 0.71 i)

120⇡

GNN
(8)

= ±

0

B@
1p
2

vuut
s✓

~q2.~q2 + 0.17
120⇡

GNN

◆2

+

✓
0.71

120⇡

GNN

◆2

+ ~q2.~q2 + 0.17
120⇡

GNN

+i

1p
2

vuut
s✓

~q2.~q2 + 0.17
120⇡

GNN

◆2

+

✓
0.71

120⇡

GNN

◆2

� ~q2.~q2 � 0.17
120⇡

GNN

1

CA .

The imaginary part of the complex pole will lead to a damping of the component of the grav-

itational wave corresponding to that mode. The complex poles are gravitationally coupled to

matter, we must thus assume that the massive modes are produced at the same rate as the

usual massless graviton mode if this is allowed kinematically. During an astrophysical event

leading to gravitational waves, some of the energy will be emitted into these massive modes

which will decay rather quickly because of their large decay width. The possible damping

of the gravitational wave implies that care should be taken when relating the energy of the

gravitational wave observed on earth to that of the astrophysical event as some of this energy

could have been dissipated away as the wave travels towards earth.

The idea that gravitational waves could experience some damping has been considered

before [10], however it is well known that the graviton cannot split into many gravitons,

3

The idea that inflation may be due to degrees of freedom already present in the stan-

dard model of particle physics or quantum general relativity is extremely attractive and has

received much attention in the recent years. In particular two models stand out by their

simplicity and elegance. Higgs inflation [1–3] with a large non-minimal coupling of the Higgs

boson H to the Ricci scalar (⇠H†HR) and Starobinsky’s inflation model [4] based on R2

gravity are both minimalistic and perfectly compatible with the latest Planck data.

These two models should not be considered as physics beyond the standard model but

rather both operators ⇠H†HR and R2 are expected to be generated when general relativity

is coupled to the standard model of particle physics. We will come back to that point

shortly. The aim of this paper is to point out an intriguing distinct possibility, namely that

Starobinsky inflation is generated by quantum e↵ects due to a large non-minimal coupling

of the Higgs boson to the Ricci scalar. In that framework, we do not need to posit that the

Higgs boson starts at a high field value in the early universe which would alleviate constraints

coming from the requirement of having a stable Higgs potential even for large Higgs field

values [5–7].

We shall now argue that both terms necessary for Higgs inflation or Starobinsky’s model

are naturally present when the standard model of particle physics is coupled to general rela-

tivity. While the quantization of general relativity remains one of the outstanding challenges

of theoretical physics, it is possible to use e↵ective field theory methods below the energy scale

M? at which quantum gravitational e↵ects are expected to become large. The energy scale

M? is usually assumed to be of the order of the Planck scale MP =
p
8⇡GN

�1
= 2.4335⇥1018

GeV, however recent work has shown that even in four space-time dimensions this energy

scale is model dependent. At energies below M?, we can describe all of particle physics and

cosmology with the following e↵ective field theory (see e.g. [8–10])

S =

Z
d4x

p
�g

✓✓
1

2
M2 + ⇠H†H

◆
R� ⇤4

C + c1R
2 + c2C

2 + c3E + c4⇤R + (1)

�LSM � LDM +O(M�2
? )

◆

where we have restricted our considerations to dimension four operators which are ex-

pected to dominate at least at low energies. Note that we are using the Weyl basis and

the following notations: R stands for the Ricci scalar, Rµ⌫ for the Ricci tensor, E =

Rµ⌫⇢�Rµ⌫⇢� � 4Rµ⌫Rµ⌫ + R2, C2 = E + 2Rµ⌫Rµ⌫ � 2/3R2, the dimensionless ⇠ is the non-

minimal coupling of the Higgs boson H to the Ricci scalar, the coe�cients ci are dimension-

less free parameters, the cosmological constant ⇤C is of order of 10�3 eV, the Higgs boson

vacuum expectation value, v = 246 GeV contributes to the value of the Planck scale

(M2 + ⇠v2) = M2
P , (2)
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NB	the	Wilson	coefficients	
of	these	operators	must		
Be	measured	in	experiments.	



Predic%ons	of	EFT	
•  The Wilson coefficients of these operators are predictions of 

quantum gravity.

•  These operators correspond to the resummed graviton propagator 
we have considered and will lead to some non-local effects.
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α β γ ᾱ β̄ γ̄
Scalar 5(6ξ − 1)2 −2 2 5(6ξ − 1)2 3 −1
Fermion −5 8 7 0 18 −11
Vector −50 176 −26 0 36 −62

Graviton 430 −1444 424 90 126 298

TABLE I: Coefficients of different fields. All numbers should be divided by 11520π2.

The coefficient a2(x) is known for scalars, fermions and photons [5, 24]

aS2 (x) =
1

180

(
5

2
R2 −RµνR

µν +RµναβR
µναβ

)
(51)

aF2 (x) =
1

360

(
−5R2 + 8RµνR

µν + 7RµναβR
µναβ

)
(52)

aV2 (x) =
−1

180

(
20R2 − 86RµνR

µν + 11RµναβR
µναβ

)
. (53)

Here, the result for fermions assumes a four-component spinor field. The result for the massless vector field also
includes the ghost contribution, which is twice the scalar field result with an appropriate minus sign. Finally, the
classic paper by ’t Hooft and Veltman [25] gave the result for gravitons only after using the Gauss-Bonnet relation,
but the general result has since been calculated, see e.g. [26]. This enables us to read off the result for gravitons
which also includes the ghost contribution

aG2 (x) =
215

180
R2 −

361

90
RµνR

µν +
53

45
RµναβR

µναβ . (54)

In table (I), we collect the coefficients of different fields.
The results are shown for a scalar with a coupling ξRφ2 and the parameter ξ enters the α couplings

α = ᾱ =
(6ξ − 1)2

2304π2
(55)

with β, γ, β̄, γ̄ independent of ξ. Unless stated otherwise, our results are presented for a minimally coupled scalar
(ξ = 0), while a conformally coupled scalar has ξ = 1/6. For conformally invariant fields the coefficient ᾱ will
vanish. Because the FLRW metric is conformally flat, the coupling β̄ does not contribute to our analysis as mentioned
previously. This leaves only the coefficient γ̄ as the active parameter. For NS scalars, Nf fermions and NV gauge
bosons, this coupling has the value

γ̄ = −
1

11520π2
[NS + 11Nf + 62NV ] . (56)

Note that all conformally invariant matter fields carry the same sign of γ̄ and will have similar effects, differing just
in magnitude. Moreover, this case is independent of the parameter µ because the Gauss-Bonnet non-local term (the
one proportional to γ̄) has no local contribution to the equations of motion.
Finally, we can also add up the contributions of all the SM particles (plus the graviton) to find effective SM

coefficients which are calculated as follows

αSM = NSαS +NlαF +NcNqαF +NV αV + αG (57)

and likewise for β and γ. Here, we have broken the fermion contribution up into quark and lepton terms Nf =
Nl +NcNq where Nl is the number of leptons, Nq and Nc are the numbers of quarks and colors respectively. For the
standard model with a minimally coupled Higgs, these numbers read

NS = 4, Nl = 6, Nc = 3, Nq = 6, NV = 12 . (58)

Hence, for this case we find

αSM =
−7

1152π2
, βSM =

287

1440π2
, γSM =

−17

1440π2
(59)
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α = ᾱ =
(6ξ − 1)2

2304π2
(55)

with β, γ, β̄, γ̄ independent of ξ. Unless stated otherwise, our results are presented for a minimally coupled scalar
(ξ = 0), while a conformally coupled scalar has ξ = 1/6. For conformally invariant fields the coefficient ᾱ will
vanish. Because the FLRW metric is conformally flat, the coupling β̄ does not contribute to our analysis as mentioned
previously. This leaves only the coefficient γ̄ as the active parameter. For NS scalars, Nf fermions and NV gauge
bosons, this coupling has the value

γ̄ = −
1

11520π2
[NS + 11Nf + 62NV ] . (56)

Note that all conformally invariant matter fields carry the same sign of γ̄ and will have similar effects, differing just
in magnitude. Moreover, this case is independent of the parameter µ because the Gauss-Bonnet non-local term (the
one proportional to γ̄) has no local contribution to the equations of motion.
Finally, we can also add up the contributions of all the SM particles (plus the graviton) to find effective SM

coefficients which are calculated as follows

αSM = NSαS +NlαF +NcNqαF +NV αV + αG (57)

and likewise for β and γ. Here, we have broken the fermion contribution up into quark and lepton terms Nf =
Nl +NcNq where Nl is the number of leptons, Nq and Nc are the numbers of quarks and colors respectively. For the
standard model with a minimally coupled Higgs, these numbers read

NS = 4, Nl = 6, Nc = 3, Nq = 6, NV = 12 . (58)

Hence, for this case we find

αSM =
−7

1152π2
, βSM =

287

1440π2
, γSM =

−17

1440π2
(59)
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we can write the action in explicitly non-local form

SNL =

∫
d4x

∫
d4y

√
g(x)

1/2
R(x)L(x, y;µ)

√
g(y)

1/2
R(y) . (44)

Again, we note that the logµ dependence in these equations corresponds to a local effect. Here, we see that replacing
the covariant d’Alembertian in Eqn. (44) by its Minkowski couterpart yields the first term in Eqn. (24).

There are three terms in the general non-local Lagrangian. Reverting temporarily to quasi-local form, these can be
written as

SQL =

∫
d4x

√
g

(

αR log

(
✷

µ2
α

)
R+ βRµν log

(
✷

µ2
β

)

Rµν + γRµναβ log

(
✷

µ2
γ

)
Rµναβ

)

(45)

where α,β, γ are numerical coefficients which we will display below. We allow for the possibility that the renormal-
ization scales are different for the three terms as the coupling constants of the local Lagrangian could be measured
at different scales. For local terms, there are only two quadratic invariants to be considered due to the Gauss-Bonnet
identity which holds strictly in four dimensions

∫
d4x

√
g RµναβR

µναβ =

∫
d4x

√
g [4RµνR

µν −R2] + total derivative . (46)

While Eqn. (45) is simple and easy to apply, an alternate form reveals some interesting physics. For this form we
employ the Weyl tensor in four dimensions

Cµναβ = Rµναβ −
1

2
(gµαRνβ + gµβRνα + gναRµβ − gνβRµα) +

1

6
R (gµαgνβ − gµβgνα) (47)

to rewrite

SQL =

∫
d4x

√
g
[
ᾱR log

(
✷

µ2
1

)
R+ β̄Cµναβ log

(
✷

µ2
2

)
Cµναβ + γ̄

(
Rµναβ log (✷)R

µναβ − 4Rµν log (✷)R
µν

+R log (✷)R
)]

. (48)

This form has several theoretical advantages. Here the last term, similar in structure to the Gauss-Bonnet term, does
not have any µ dependence because its local form does not contribute to the equations of motion. The FLRW metric
that we use below is conformally flat and thus its Weyl tensor vanishes. Thus the second term will not contribute
to our cosmological application. In turn this tells us that the cosmology study dependence on local short distance
physics comes through the first term only, and there is only one parameter µ1 ≡ µ which describes this local term.
In addition this first term is not generated by conformally invariant field theories (fermions, photons and conformally
coupled scalars) and their quantum effects will be purely non-local. The coefficients in these two different bases are
related by

α = ᾱ+
β̄

3
+ γ̄, β = −2β̄ − 4γ̄, γ = β̄ + γ̄ . (49)

We can identify the coefficients in the non-local Lagrangian because the logarithms are tied to the divergences
in the one-loop effective action, as shown by the perturbative calculation. The latter have been calculated in the
background field method, and results are known before the Gauss-Bonnet identity has been applied1. For example,
the divergent effective Lagrangian for a massless field reads

Ldiv =
√
|g|

a2(x)

16π2 ϵ
. (50)

1 This background field method resolves the problem of identifying the complete form of the non-linear completion that we had in
discussing Eq. (24).

NB:	they	are	calculated	using	
dim-reg.	

(Donoghue	et	al,	Codello	et	al.)	



Summary of EQG and bounds on its parameters 
•  We can describe any theory of quantum gravity below the Planck 

scale using effective field theory techniques:

•  Planck scale
•  ΛC~10-12 GeV; cosmological constant.
•  M★> few TeVs from QBH searches at LHC and cosmic rays.
•  Dimensionless coupling constants ξ, c1, c2 

–  c1	and	c2	<1061	[xc, Hsu and Reeb (2008)] 
	 	R2 inflation requires c1=9.7 × 108 (Faulkner et al. astro-ph/0612569]).	

–  ξ < 2.6 × 1015 [xc & Atkins, 2013]

Higgs inflation requires ξ∼104.
18	



Applica%ons	to	Cosmology	

•  Can EQG be probed in the CMB? Are there new signatures 
of this non-locality?

•  Now that we have a consistent approach to quantum 
gravity, can we build new models of inflation based on 
EQG?

•  Is there any effect in gravitational waves?

19	



Can EQG be probed in the CMB? 	

•  Gravity	leads	to	non-local	effects	in	Ma=er	
•  Let’s reconsider the resummed graviton propagator

•  Using this propagator we can now calculate the dressed 
amplitude for the gravitational scattering of 2 scalar fields.

•  The tree-level amplitude has been known for a long time: 

20	

XC,	Croon	&	Fritz	(2015)	



Non-local	effects	in	ma=er	

•  Let me rewrite the dressed propagator as

•  We find the Taylor expanded dressed amplitude:

21	



Higher	order	non-local	operator	

•  It is easy to see that A(1) can be obtained from this effective 
operator:

•  This is a non-local operator, we need to make sense of the log 
term to obtain a causal theory (Espiru et al. (2005), Donoghue 
&El-Menoufi (2014) and Barvinsky et al in the 80’s.)
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Non-local	func%on	

•  One can define the interpolating function:

•  which can be evaluated 

•  For a purely time-dependent problem one has
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Gravity	leads	to	non-local	effects	in	Ma=er	

•  We have seen that the non-local effects observed in gravity feed back 
into matter.

•  This is compatible with our interpretation of the poles of the 
resummed propagators as quantum black holes (black hole 
precursors) which are extended objects.

•  The new higher dimensional operators have an approximate shift 
symmetry

•  which is broken explicitly by the mass of the scalar field.

•  This is interesting for models of inflation.
24	



Non-gaussiani%es	in	single	field	infla%on	models	

•  Are there any observational consequences of this short distance 
non-locality?

•  The effect is suppressed by powers of the Planck scale, one can 
see that it leads to a small non-Gaussianities even for a single 
scalar inflation model.

•  However the effect is too small to be observable.
•  Let’s considering the following Lagrangian

25	



Speed	of	sound	

•  We can calculate the speed of sound:

•  which remarkably to leading order does not depend on the specific 
form of the nonlocal function.

•  GR coupled to a single scalar field thus predict a small amount from 
non-Gaussianity, but with a speed of sound very close to one.

•  Non-locality is a generic feature of quantum field theory coupled to 
GR.

26	



EQG and minimalistic inflation models

•  Besides the 750 GeV events at CERN, there are not many signs 
of new physics beyond the standard model.

•  It is still crucial to investigate whether the standard model 
Higgs and/or general relativity can describe inflation.

•  EQG is the right framework for this.

•  We need scalar degrees of freedom: Higgs boson or scalars 
hidden in higher gravitational operators such as R^2 
(Starobinsky inflation).

27	



EQG and minimalistic inflation models

•  We have seen that a large non-minimal coupling of the Higgs 
boson to curvature does not introduce a new scale.

•  An interesting possibility would be that a large non-minimal 
coupling of the Higgs boson to the Ricci scalar could lead to 
Starobinsky’s R2 inflation.

•  Let me quickly first review R2 inflation and Higgs inflation.

28	



R2 inflation 

•  The model is defined by the action in the Jordan frame

•  which corresponds to an Einstein frame action given by

•  Assuming that the scalar field σ hidden in R2 takes large values in 
the early universe, a successful prediction of the density 
perturbation δρ/ρ requires

29	



Higgs Starobinsky inflation 

•  Let us start from the action of EQG

•  The running of c1 is depend on the Higgs non-minimal coupling

•  We find

30	

See	Codello	et	al.	Donoghue	et	al.	

xc	&	Kuntz	2016		



Higgs Starobinsky inflation 

•  The bounds on c1 are very weak in today’s universe (c1<1061)

•  Even if c1 is of order unity today it would have been much larger in the early 
universe if the Higgs boson non-minimal coupling was large. 

•  Indeed, we assume that inflation took place at some high energy scale e.g.   1015 
GeV, the log term is a factor of order 60 if we take the scale μ1 of the order of the 
cosmological constant. 

•  A Higgs non-minimal coupling to the Ricci scalar of  = 1.8×104 would lead to a 
coefficient c1 = 0.97×109 for R2. 

•  Assuming that the scalar extra degree contained in R2 took large field values in the 
early universe, a large non-minimal coupling of the Higgs boson to the Ricci 
scalar can trigger Starobinsky inflation even if the standard model vacuum is 
metastable as the Higgs boson itself does not roll down its potential during 
inflation. 

•  Inflation is due entirely to the R2, but is triggered by the Higgs large non-minimal 
coupling. 31	

xc	&	Kuntz	2016		



Is the potential stable?

•  The effective action is in the early universe given by

•  with

•  The parameter β is a prediction (as explained before) of EQG

•  and it is indeed large for a large  Higgs non-minimal coupling

•  We need to check the effective potential carefully
32	
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Is the potential stable?

•  Note that the effective action has been fully regularized and 
renormalized in the Jordan frame where it was defined.

•  We can thus treat the EFT as a classical theory of the type F(R) with 

•  and map it to the Einstein frame to study the scalar potential:

33	

xc	&	Kuntz	2016		



Is the potential stable?

•  We can find a formal solution:

•  We can be understood as a series in

•  To zeroth order we recover the usual R2 model 
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The potential is stable

•  The series expansion will generate higher order terms corresponding 
to operators of the type

     and higher derivatives thereof. 

•  These new terms are however suppressed by powers of

     and can be safely ignored. 

•  Note that log-term appearing in the F(R) term of the potential  is 
also suppressed by β/2α  compared to the usual R2 potential. 35	

xc	&	Kuntz	2016		



Two comments about recent literature

•  Herranen et al made two bold claims recently:

–  In Phys. Rev. Lett. 113, 211102 (2014): large fluctuations of order H in case of 
a high inflationary scale as suggested by BICEP2. They claim that for a high 
inflationary scale a large curvature mass is generated due to RG running of 
non-minimal coupling ξ, which either stabilizes the potential against 
fluctuations for ξ≳6⋅10−2, or destabilizes it for ξ≲2⋅10−2 when the generated 
curvature mass is negative. Only in the narrow intermediate region the effect 
of the curvature mass may be significantly smaller

–  In Phys. Rev. Lett. 115, 241301 (2015): claiming find that for ξ≳1, rapidly 
changing space-time curvature at the end of inflation leading to significant 
production of Higgs particles, potentially triggering a transition to a negative-
energy Planck scale vacuum state and causing an immediate collapse of the 
Universe.
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Two comments about recent literature

•  Unfortunately, or rather fortunately for models of high scale 
inflation, these papers do not look quite right to me.

•  In the first one they used an incorrect running for the non-minimal 
coupling of the Higgs field. 

•  Moss actually reached a different conclusion using a universal (and 
frame independent) beta-function (arXiv:1509.03554)

•  The calculation of this beta-function is indeed tricky and has been 
confusing people for a while (the literature is full of conflicting 
results).
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Two comments about recent literature

•  In the second paper, they treated the term  R H2 term as a mass term 
for the Higgs boson. 

•  This is really too naive, as it is well known that this term leads to a 
mixing between the kinetic term of the Higgs boson and of the 
graviton and it needs to be diagonalized. 

•  In other words, the Higgs and graviton fields decouple and the non-
minimal coupling does not contribute to the mass of the Higgs 
boson.

•  There is no violation of the equivalence principle: the Higgs boson 
couples with the same strength as all other fields to gravity and it is 
not produced massively by the inflaton via this coupling during 
inflation. 38	



Gravita%onal	Waves	in	Effec%ve	Quantum	Gravity

•  Let us go back once again to the resummed graviton propagator

•  where

•  From	the	resummed	graviton	propagator	in	momentum	space,	
we	can	directly	read	o	the	classical	field	equa%on	for	the	spin	2	
gravita%onal	wave	in	momentum	space

39	
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Gravita%onal	Waves	in	Effec%ve	Quantum	Gravity

•  We have solved this equation earlier and found

•  The	complex	pole	corresponds	to	a	new	massive	degree	of	
freedom	with	a	complex	mass	(i.e.	they	have	a	width).		

•  The	general	wave	solu%on	is	thus	of	the	form

40	
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Gravita%onal	Waves	in	Effec%ve	Quantum	Gravity

•  We	therefore	have	three	degrees	of	freedom	which	can	be	
excited	in	gravita%onal	processes	leading	to	the	emission	of	
gravita%onal	waves.		

•  Note	that	our	solu%on	is	linear,	non-lineari%es	in	gravita%onal	
waves	have	previously	been	inves%gated	and	are	as	expected	
very	small.	

•  To a very good approximation, we find the mass of the complex 
pole
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Gravita%onal	Waves	in	Effec%ve	Quantum	Gravity

•  This	excita%on	corresponds	to	a	wave	with	the	frequency	

•  The	imaginary	part	of	the	complex	pole	will	lead	to	a	damping	of	the	
component	of	the	gravita%onal	wave	corresponding	to	that	mode.

42	
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Gravita%onal	Waves	in	Effec%ve	Quantum	Gravity

•  The complex poles are gravitationally coupled to matter, thus the 
massive modes are produced at the same rate as the usual 
massless graviton mode if this is allowed kinematically. 

•  During an astrophysical event leading to gravitational waves, 
some of the energy will be emitted into these massive modes 
which will decay rather quickly because of their large decay 
width. 

•  The possible damping of the gravitational wave implies that care 
should be taken when relating the energy of the gravitational 
wave observed on earth to that of the astrophysical event as some 
of this energy could have been dissipated away as the wave 
travels towards earth.
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Gravita%onal	Waves	in	Effec%ve	Quantum	Gravity
•  Since the complex poles couple with the same coupling to matter as the 

usual massless graviton, we can think of them as a massive graviton 
although strictly speaking these objects have two polarizations only in 
contrast to massive gravitons that have five.

•   This idea has been applied in the context of F(R) gravity arXiv:
1603.09551. 

•  We shall assume that these massive modes can be excited during the 
merger of two black holes. 

•  As a rough approximation, we shall assume that all the energy released 
during the merger is emitted into these modes. 

•  Given this assumption, we can use the limit derived by the LIGO 
collaboration on a graviton mass:
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Gravita%onal	Waves	in	Effec%ve	Quantum	Gravity
•  We thus find a bound

•  we thus obtain a lower bound on N: N > 4×10102 if all the energy of the merger 
was carried away by massive modes. 

•  Clearly this is not realistic as the massless mode will be excited.

•  However, it implies that if the massive modes are produced, they will only arrive 
on earth if their masses are smaller than 1.2 ×10-22 eV. 

•  Waves corresponding to more massive poles will be damped before reaching 
earth.

•  We shall see that there are tighter bounds on the mass of these objects coming 
from Eötvös type pendulum experiments. 45	
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GW150914	and	heavy	waves?
•  The LIGO collaboration estimates that the gravitational wave GW150914 

is produced by the coalescence of two black holes: the black holes follow 
an inspiral orbit before merging, and subsequently going through a final 
black hole ringdown. 

•  Over 0.2 s, the signal increases in frequency and amplitude in about 8 
cycles from 35 to 150 Hz, where the amplitude reaches a maximum. 

•  The typical energy of the gravitational wave is of the order of 150 Hz or  
6 ×10-13 eV. 

•  In other words, if the gravitational wave had been emitted in the massive 
mode, they could not have been heavier than 6 ×10-22 GeV. 

•  However, this shows that it is perfectly conceivable that a sizable number 
of massive gravitons with mg < 6 ×10-22 eV could have been produced. 46	
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Bounds  from Eötvös type pendulum experiments
•  We have seen that the resummed graviton propagator discussed above can 

be represented by the effective operator

•  The log term will be a contribution of order 1, this operator is thus very 
similar to the more familiar c R2 term studied by Stelle long ago.

•  The current bound on the Wilson coefficient of c is c < 1061. 

•  We can translate this bound into a bound on N: N < 2×1065. 

•  This implies that the mass of the complex pole must be larger than          5 
×10-13 GeV. 

•  This bound, although very weak, is more constraining than the one we 
have obtained from the graviton mass by 37 orders of magnitude. 47	
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Conclusions 
•  We have discussed a conservative effective action for quantum gravity (EQG) 

within usual QFTs such as the standard model.

•  EQG can make predictions which can be confronted to data.

•  One of the most exciting predictions is the existence of non-locality, in the 
form of new poles beyond the massless graviton.

•  These poles can be interpreted as black hole precursors and their masses and 
widths can be calculated.

•  These poles lead to non-local effects in QFT and in gravity.

•  We have investigated models of inflation within EQG and found new 
connections between well known models of inflation. 

•  Finally we have shown that these poles could play an important role for 
gravitational waves.
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