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ü  Several issues  in modern  Astrophysics ask for new paradigms. 
ü  No final evidence for Dark Energy and Dark Matter at fundamental 

level (LHC, astroparticle physics, ground based experiments, LUX…). 
ü  Such problems could be framed extending GR at infrared scales. 
ü  GR does not work at ultraviolet scales (no Quantum Gravity ). 
ü  ETGs as minimal extension of GR considering Quantum Fields in 

Curved Spaces  
ü  Big issue: Is it possible to find out probes and test-beds  for  ETGs? 
ü  Further modes of gravitational waves! 
ü  Constraints at Newtonian and post-Newtonian level could come from:  
               -  Geodesic motions around compact objects e.g- SgrA* 
               -  Lense-Thirring  effect 
                - Exact torsion-balance experiments 
                - Microgravity experiments from atomic physics 
                - Violation of Equivalence Principle (effective masses related to    

      further gravitational  degrees of freedom) 
 
            Main role of GPB and LARES satellites 

Why extending General Relativity?	
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The general case: Scalar-tensor-higher-order gravity


The trace of  the field equation


the Klein-Gordon  equation
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Action 

Field Equations 



An example:  Non-Commutative Spectral Geometry 

For almost-commutative manifolds, the geometry is described by the tensor 
product M× F of a 4D compact Riemannian manifold M  and a

discrete non-commutative space F, with M describing the geometry of 
spacetime and F the internal space of the particle physics model.


The non-commutative nature of F is encoded in the spectral triple (AF ,HF ,DF ) 


The operator DF is the Dirac operator





 on the spin manifold M; it corresponds to the inverse of the Euclidean 
propagator of fermions and is given by the Yukawa coupling matrix and the 
Kobayashi-Maskawa mixing parameters.


The algebra AF =C∞(M) of smooth functions on M, playing the role of the 
algebra of coordinates, is an involution of operators on the finite-dimensional 
Hilbert space HF of Euclidean fermions.


The algebra AF has to be chosen so that it can lead to the Standard Model of 
particle physics, while it must also fulfill non-commutative geometry 
requirements.
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It is chosen to be


The spectral geometry in the product M× F is given by the product rules:


with k=2a; H is the algebra of quaternions, which encodes the non-commutativity of the 
manifold.


The first possible value for k is 2, corresponding to the  Hilbert space of four fermions; it is 
ruled out from the existence of quarks.


The minimum possible value for k is 4 leading to the correct number of k2 =16 fermions in 
each of the three generations.


Higher values of k can lead to particle physics models beyond the Standard Model


where L2(M, S) is the Hilbert space of L2 spinors and DM is 
the Dirac operator of the Levi-Cività spin connection on M


Applying the spectral action principle to the product

geometry M×F leads to the NCSG action


split into the bare bosonic action and the fermionic one. Note that DA =D+A +ϵ’JAJ−1 are 
unimodular inner fluctuations, f is a cutoff function, Λ fixes the energy scale, J is the real 
structure on the spectral triple and ψ is a spinor in the Hilbert space H of the quarks and 
leptons.


The  case of Non-Commutative Spectral Geometry 
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Considering the  bosonic part of the action, seen as the bare action at the mass scale Λ 
which includes the eigenvalues of the Dirac operator that are smaller than the cutoff 
scale Λ, considered as the grand unification scale.


Using heat kernel methods, the trace Tr(fDA/Λ) can be written in terms of the 
geometrical Seeley–de Witt coefficients  known for any second-order elliptic differential 
operator, as Σ∞n=0F4−nΛ

4−nan where the function F is defined such that

 F(D2

A )=f(DA).


Considering the Riemannian geometry to be four dimensional, the asymptotic

expansion of the trace reads


where fk are the momenta of the smooth even 
test (cutoff) function which decays fast at 
infinity, and only enters in the multiplicative 
factors:


The  case of Non-Commutative Spectral Geometry 
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Since the Taylor expansion of the f function vanishes at zero, the asymptotic expansion 
of the spectral action reduces to


Hence, the cutoff function f plays a role only through its momenta. f0 , f2 , f4 are three real 
parameters, related to the coupling constants at unification, the gravitational constant,

and the cosmological constant, respectively


The NCSG model lives by construction at the grand unification scale, hence providing a 
framework to study early Universe cosmology


The gravitational part of the asymptotic expression for the bosonic sector of the

NCSG action, including the coupling between the Higgs field ϕ and the Ricci curvature 
scalar R, in Lorentzian signature, obtained through a Wick rotation in imaginary time, 
reads


with a a parameter related to fermion and lepton masses and lepton mixing


At unification scale (set up by Λ), α0 = −3f0/(10π2), ξ0 = 1/12.


The  case of Non-Commutative Spectral Geometry 
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The square of the Weyl tensor can be expressed in terms of R2 and RαβRαβ 
as


The above action  is clearly a particular case of the above  action

describing a general model of  ETG


As we will show, it may lead to effects observable at local scales (in 
particular at Solar System scales); hence it may be tested against 
current gravitational data by GPB and LARES.



IN OTHER WORDS, WE CAN USE GPB AND LARES TO TEST 
FUNDAMENTAL PHYSICS!!!


The  case of non-commutative spectral geometry 
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 The weak field limit


Jeni Lee: 21 Tuesday II Bright Circle, 2014
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 The weak field limit

•  The typical values of the Newtonian gravitational potential Φ are  larger (in modulus) than 

10−5 in the Solar System (in geometrized units, Φ is dimensionless).


•  Planetary velocities satisfy the condition v2 ≲ −Φ, while the matter pressure P experienced 
inside the Sun and the planets is generally smaller than the matter gravitational energy 
density −ρΦ; in other words P/ρ ≲ −Φ


•  As matter of fact, one can consider that these quantities, as a function of the velocity, 
give second-order contributions as −Φ ∼ v2 ∼ O(2)


•  Then we can set, as a perturbation  scheme of the metric tensor, the following

     expression


•   Φ, Ψ, φ are proportional to the power c−2 (Newtonian limit) while Ai is proportional to  c−3 
and Ξ to c−4 (post-Newtonian limit)
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 The weak field limit

The function f, up to the c−4 order, can be developed as


while all other possible contributions in f are negligible


The field equations  hence read


where △ is the Laplace operator in the flat space
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 The weak field limit

The geometric quantities Rμν and R are evaluated at the first order with respect to the 
metric potentials Φ, Ψ and Ai. By introducing the effective masses






and setting fR(0, 0, ϕ(0))=1, ω(ϕ (0))= 1/2 for simplicity, we get the complete set of differential 
equations


The components of the Ricci tensor  in the weak-field limit 
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 The weak field limit


The pressure is negligible in the weak field limit,  it reads Tμν = ρuμuν with uσuσ =1


Expansion of the energy momentum tensor Tμν 


Starting at   the zeroth order, it is  Ttt =T(0) 
tt = ρ, Tij =T(0) ij = 0 and Tti =T(1)

 ti = ρvi, where ρ 
is the density mass and vi is the velocity of the source


 Tμν is independent of metric potentials and satisfies the Bianchi identities

                                                                Tμν,μ =0


Equations  read
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 Solutions for fields Φ, φ and R 


The above equations are a coupled system and, for a pointlike source ρ(x) = Mδ(x), 
admit the solutions


where rg is the Schwarzschild radius


and


 ξ and η satisfy the condition


The solution of the gravitational

potential Φ reads


and
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Solutions for fields Φ, φ and R 


for a pointlike source, it  is


where


For fY → 0 i.e. mY → ∞, we obtain the same outcome for the gravitational 
potential of  f(R, ϕ)-theory
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 Solutions for fields Ψ and Ai


Solution for Ai, 


In Fourier space, solution presents the  massless pole of GR and a massive one  induced by 
the RαβRαβ term


The  solution is the sum of GR contributions and massive modes


For a spherically symmetric system (|x| = r) at rest and rotating with angular frequency 
Ω(r), the energy momentum tensor Tti is


where R is the radius of the body and Θ is the Heaviside function
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Solutions for  fields Ψ and Ai


In fact for any term                    there is a geometric  factor multiplying the Yukawa term, 
namely




We  get


For Ω(r)=Ω0, the metric potential  is


in the approximation


 α is the angle between the vectors x, x’, with x = r x  where ˆx =(sin θ cos ϕ;, sin θ sin ϕ, 
cos θ) and, at the first order of r’/r, we can evaluate the integration

in the vacuum (r > R) as
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 Solutions for  fields Ψ and Ai


The field A outside the sphere is


where J =2MR2Ω0/5 is the angular momentum of the ball


The modification with respect to GR  has the same feature as the one 
generated by the pointlike source 


From the definition of mR and mY ,  the presence of a Ricci scalar function [fRR.(0) ≠ 
0] appears only in mR


Considering  f(R)-gravity (mY → ∞), the above solution is unaffected

by the modification in the Hilbert-Einstein action.
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The  body motion in the weak gravitational field


Jeni Lee: Spring Festival II, Jeni Lee, 2013
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The body motion in the weak gravitational field


Let us consider the geodesic equations


Where                                         


In terms of the potentials generated by the ball source with radius R, the components of the 
metric gμν read


and the non-vanishing Christoffel symbols read
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Circular rotation curves in a spherically symmetric field 

In the Newtonian limit, neglecting the rotating component of the source, leads to the  
equation of motion 


Our aim is to evaluate the corrections to the classical motion in the easiest

situation, namely the circular motion, in which case we do not consider radial and vertical 
motions.


The condition of stationary motion on the circular orbit reads
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Circular rotation curves in a spherically symmetric field 


Let us consider the phenomenological potential


With α and mS free parameters.  Sanders tried to fit galactic rotation curves of spiral 
galaxies in the absence of dark matter, within the modified Newtonian dynamics 
(MOND) proposal by Milgrom. 


The  parameters selected by Sanders were α ≃ −0.92 and 1/mS ≃ 40 Kpc


This potential can be  used also for fitting  elliptical galaxies  (SC et al. ApJ (2012))


In both cases, assuming a negative value for α, an almost constant profile for rotation 
curve is recovered (SC and De Laurentis,  Annalen  Phys. 2012).
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Circular rotation curves in a spherically symmetric field 


Setting the gravitational constant equal to


where G∞ is the gravitational constant as measured at infinity, and imposing


the potential becomes


and then the Sanders potential can be recovered.


In Fig. below we show the radial behavior of the circular velocity induced by the presence 
of a ball source in the case of the Sanders potential and of potentials shown in next Table.
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The circular velocity of a ball source of mass M and radius R, with the 
potentials of Table I. We indicate case A by a green line, case B by a yellow line, 
case D by a red line, case C by a blue line, and the GR case by a magenta

line. The black lines correspond to the Sanders model for −0.95<α<−0.92. 

The values of free parameters are ω(ϕ (0)).. . −1/2,

Ξ = −5, η=.3, mY = 1.5 * mR, mS=1.5 * mR, mR =.1*  R−1.
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Rotating sources and orbital parameters

Geodesic equations 


 in the coordinate system J = (0, 0, J) reads


where


with Lx,Ly and Lz the components of the angular momentum
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Rotating sources and orbital parameters


The first terms in the right-hand side of the above equation, depending on the 
three parameters mR, mY and mϕ, represent the Extended Gravity  
contribution to the Newtonian acceleration.


The second terms in these equations, depending on the angular momentum J 
and the EG parameters mR, mY and mϕ, correspond to DRAGGING  
CONTRIBUTIONS


The case mR → ∞, mY → ∞ and mϕ → 0 leads to Λ(r) → 0, ζ(r)→ 1 and Σ(r) → 0, 
and hence one recovers the familiar results of GR


These additional gravitational terms can be considered as perturbations of

Newtonian gravity, and their effects on planetary motions can be calculated 
within the usual perturbation  schemes assuming the Gauss equations 
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Rotating sources and orbital parameters


Let us consider the right-hand side of the above equations as the components (Ax , Ay , Az ) 
of the perturbing acceleration in the system (X, Y, Z) (see next Fig.), with X the axis passing

through the vernal equinox γ, Y the transversal axis, and Z the orthogonal axis parallel to 
the angular momentum J of the central body


In the system (S,T,W), the three components can be expressed as (As , At , Aw), with S the

radial axis, T the transversal axis, and W the orthogonal one


We will adopt the standard notation:


•  a is the semimajor axis; 

•  e is the eccentricity

•  p=a(1 − e2) is the semilatus rectum;

•   i is the inclination; 

•  Ω is the longitude of the ascending node N;

•  ω~ is the longitude of the pericenter Π;

•  M0 is the longitude of the satellite at time t = 0; 

•  ν is the true anomaly;

•   u is the argument of the latitude given by u = ν + ω~ − Ω;

•   n is the mean daily motion equal to n=(GM/a3)1/2;

•  and C is twice the velocity, namely 
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i = ∢ YNΠ is the inclination; Ω = ∢ XON is the longitude of the ascending node 
N; ω~ = broken∢ XOΠ is the longitude of the pericenter Π; ν = ∢ ΠOP is 
the true anomaly; u = ∢ ΩOP = ν + ω~ − Ω is the argument of the latitude; J 
is the angular momentum of rotation of the central body; and JSatellite is the 
angular momentum of revolution of a satellite around the central body.
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Rotating sources and orbital parameters

The transformation rules between the coordinates

 frames (X, Y, Z) and (S, T,W) are


and the components of the angular momentum obey the 
equations


The components of the perturbing acceleration in the

(S, T,W) system read


The As component has two contributions:  one  from the modified Newtonian potential 
Φball(x),  another from the gravito-magnetic field

Ai  is a higher order term.


The components At and Aw depend only on the gravito-magnetic field
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Rotating sources and orbital parameters

The Gauss equations for the variations of the six orbital parameters, resulting from the

perturbing acceleration with components Ax , Ay ,Az  are


where


Corresponding equations of the six orbital 
parameters for ETGs, with the dynamics of a; e; 
ω~ ; L0 depending  on  terms related to the 
modifications of  Newtonian potential.   
Dynamics of Ω and i depend  on the dragging

terms.
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Rotating sources and orbital parameters

Considering an almost circular orbit (e ≪ 
1), we integrate the Gauss equations with 
respect to the only anomaly ν, from 0 to 
ν(t) = nt, since all other parameters have 
a slower evolution than ν, hence they can 
be considered as constraints with respect 
to ν
 At first order we get


We hence notice that the contributions to the semimajor axis a and eccentricity e vanish, as in 
GR, while there are nonzero contributions to i, Ω, ω~ and M0. In particular, the contributions 
to the inclination i and the longitude of the ascending node Ω depend only on the drag effects of 
the rotating central body, while the contributions to the pericenter longitude ω~ and mean 
longitude at M0 depend also on the modified Newtonian potential


where
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Rotating sources and orbital parameters


In the considered  ETG models, the inclination i has a nonzero 
contribution, in contrast to the results in  GR, and also

 Δω (t) ≠ ΔM0(t), given by


In the limit mR → ∞; mY → ∞ and mϕ → 0, we obtain  results of GR.
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Experimental constrains


Jeni Lee: Flight of Fancy V , 2012
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Experimental constrains

The orbiting gyroscope precession can be split into a part generated by the metric 
potentials, Φ and Ψ, and one generated by the vector potential A


The equation of motion for the gyrospin three-vector S is


where the geodesic and Lense-Thirring precessions are


The geodesic precession, ΩG  can be written as the sum of two terms, one obtained with GR 
and the other being the extended gravity contribution


Then we have


where


Where |x|= r
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Experimental constrains

Similarly one has


where we have assumed that, on the average, <(J · x).xi > . 


The  changes in the direction of spin gyroscopes, contained in the satellite 
orbiting at h = 650 km of altitude and crossing directly over the poles, have 
been measured with extreme precision


with


The Gravity Probe B (GPB) satellite contains a set of four gyroscopes and has 
tested two predictions of GR: the geodetic effect and frame-dragging (Lense-
Thirring effect)


and 


The  geodesic precession and the Lense-Thirring precession, measured by 
the Gravity Probe B satellite and those predicted by GR, are
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Experimental constrains


Imposing  |Ω (EG) G | ≲ δΩG and |Ω(EG) LT |≲ δΩLT,  with r*= R⊕ + h where 
R⊕ is the radius of the Earth and h = 650 km is the altitude of the satellite, 
we get


From the experiments, we have |Ω(GR) G |= 6606 mas

and δ|ΩG|=18 mas, |Ω(GR) 

LT |= 37.2 mas and δ|ΩLT| = 7.2 mas


We  obtain that       mY ≥7.3 ✕ 10−7m−1
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Experimental constrains

The Laser Relativity Satellite (LARES) mission of the Italian Space Agency is 
designed to test the frame dragging and the Lense-Thirring effect, to within 1% 
of the value predicted in the framework of GR


The body of this satellite has a diameter of about 36.4 cm and weights

about 400 kg


It was inserted in an orbit with 
1450 km of perigee, an inclination 
of 69.5 ± 1 degrees and eccentricity

9.54 × 10−4


It allows to obtain a stronger 
constraint

for mY:


From  which we obtain          mY ≥ 1.2 ×10−6m−1
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Experimental constrains

In the specific case of the Non-Commutative Spectral Geometry, the above 
quantities become for  mR → ∞, 


and                    implying that


and


The first relation


hence the constraint on mY imposed from GPB is


whereas the LARES experiment  implies


A  bound similar to the one obtained earlier by using binary pulsars, or the 
GPB data.


A more stringent constraint is obtained using torsion balance experiments


Results from laboratory experiments designed to test the fifth force gives the  
constraint       mY > 104 m−1
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Experimental constrains


In conclusion, using data from the Gravity Probe B and LARES missions, we 
obtain  constraints on mY.


Using the stronger constraint for mY, namely mY > 104 m−1, we observe that the 
modifications to the orbital parameters induced by Non-Commutative Spectral 
Geometry are indeed small, confirming the consistency between the predictions of 
NCSG, as a gravitational theory beyond GR, and  Gravity Probe B

 and LARES measurements


This results show that  space-based experiments can be used 
to test extensively parameters of fundamental theories
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Conclusions


Jeni Lee: Casa Blanca Sq I,  2013

43	
  



Conclusions


•  In the context of ETGs, we have studied the linearized field equations in the limit of weak 
gravitational fields and small velocities generated by rotating gravitational sources, aimed 
to constrain the free parameters, which can be seen as effective masses (or lengths).





•  The precession of spin of a gyroscope orbiting around  a rotating gravitational source can be 
studied.


•  Gravitational field gives rise, according to GR predictions, to geodesic and Lense-Thirring 
processions, the latter being strictly related to the off-diagonal terms of the metric tensor 
generated by the rotation of the source


•  The gravitational field generated by the Earth can be tested  by  Gravity Probe B and LARES  
satellites. These experiments tested the geodesic and Lense-Thirring spin precessions with 
high precision.


•  The corrections on  the precession induced by scalar, tensor and curvature corrections can 
be measured and confronted with data.


44	
  



Conclusions


•  Considering an almost circular orbit,  the Gauss equations can be integrated. The variation 
of the parameters at first order with respect to the eccentricity can be obtained. 


•  It is possible to  show that the induced EG effects depend on the effective masses mR, mY and 
mϕ , while the non validity of the Gauss theorem implies that these effects also depend on 
the geometric form and size of the rotating source.


•  Requiring that the corrections be within the experimental errors, we then imposed 
constraints on the free parameters of the considered EG model. Merging the experimental


    results of Gravity Probe B and LARES, our results can be summarized as follows:


and mY ≥ 1.2 × 10−6m−1 
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Conclusions


•  The field equation for the potential Ai, is time independent provided the potential Φ is time 
independent.


•  This aspect guarantees that the solution  does not depend on the masses mR and mϕ and, in 
the case of f (R, ϕ). gravity, the solutions the same as in GR


•  In the case of spherical symmetry, the hypothesis of a radially static source is no longer

     considered, and the obtained solutions depend on the choice of  f (R, ϕ)  ETG model, 

     since the  geometric factor F(x) is time dependent.


•  Hence in this case, gravitomagnetic  corrections to GR emerge with time-dependent sources


•  The case of Non-commutative Spectral Geometry deserves some remarks:


•  This model descends from a fundamental theory and can be considered as a particular case 
of ETGs;


•  Its parameters can be probed in the weak-field limit and at local  scales, opening new 
perspectives for fundamental physics and astronomy by satellites.
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