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Lovelock gravity

Gravitational theories with higher derivative terms:

e E.o.m. contain more than two derivatives of the metric

 Hard to solve exactly

 Additional degrees of freedom

There exists a special class of gravitational theories with higher
derivative terms, Lovelock gravity

* E.o.m. contain only up to second order derivatives of the metric.
e Holographic point of view:

'The higher curvature terms correspond, on the gauge

theory side of the AdS/CFT, to corrections due to finite N
(rank of the gauge group) and finite t'Hooft coupling.




Lovelock gravity
Extension of Einstein theory to higher dimensions

e Great interest in theoretical physics as it describes
a wide class of models

o Admits the Einstein general relativitfr and the so called Chern-
Simons theories of gravity as particular cases

e Einstein-Gauss-Bonnet gravity = 2nd-order Lovelock

e 5d GB gravity can be used to describe 1/N corrections to
relativistic 4d QF'I's with a gravitational dual.

e In the hydrodynamic limit the theory describes a “GB plasma” and
transport coefficients can be calculated using AdS/CF
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Maxwell- Lovelock gravity
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e The term k=0 —=> Cosmological Constant Ly = —2A
e The term k=1 ©=——> FEinstein-Hilbertaction L = R



Gauss - Bonnet and

Third order Lovelock gravity

2" order Lovelock term (Gauss- Bonnet )
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3 order Lovelock term
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Charged Lovelock Black Holes

The static charged spherically symmetric AdS Lovelock BHs

Q
—f(r)ydt* + f (r)" dr* + %92, F—mthdT
BH horizons geometries = k=210
Constant Curvature (d—2)(d—3)k
Z GGy = TGN (Fuc By = 9w Feal™)

The ﬁeld eqs reduce to the requirement that the metric
function solves the polynomial equation of degree kumax
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Thermodynamical quantities

in Lovelock gravity

Using the Hamiltonian formalism it is possible to derive

o The expression for gravitational entropy in Lovelock gravity
and the corresponding first law of black hole thermodynamics
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5d Maxwell- GB Black Brane (BB)

Thermodynamics
Charged GBBB |. . . e RN BB
thermodynamics | indistinguishable | ¢}y oy o dynamics

If expressed in terms of eftective physical parameters

2
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Rescaling of the time coordinate ¢ —Nyt
necessary to have a unit ¢ in the dual CF'T

MADM Ty c—=——> 'The thermodynamic
N, I'= Ny expressions do not depend
- on the Lovelock ap., k > 2
Nis fixed in terms of (v>9 (only for kK = 0) -
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5d GB Black Brane (BB)

Near — horizon limit

o 'The extremal, near-horizon limit of the two classes of
branes is the same:

they allow (AdS:z x Rs), near-horizon, exact solution

o In the near horizon regime the contributions of the
higher-curvature terms to the field equations vanish

o Although in the UV the associated dual QFTs are
different, they flow in the IR to the same fixed point!
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Geometrical properties

Uncharged

Two
branches
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The theory allows for two | Holographically they

branches of solutions represent the flows
continuously connected between two different
trough a branch-point CF'Ts through a

singularity singularity



GB plasma 7/s

o In the non-extremal case we find a non-universal, |
monotonically increasing (a2 < 0)/ decreasing (a2 > ()
temperature dependent

o Temperature dependent expression for 7/s
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e In the extremal case we find the universal value
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2nd-order Lovelock

: Thermodynamic 1
| s of topological
! black holes in R*

Gauss — Bonnet ; gravity
! G. Cognola, M.
! Rinaldi,_ L_. Vanzo,
Only for sufhciently small pressure the metric possesses :_‘?_Zf[b_'”'_ _________
an asymptotic AdS region:  p < prax
'The metric function is the solution of this polynomial:
Amq?
2 (= a2 e —f) Losogz” T —mk ¢ ==f)

IEi

f+(p<pm)

(d —2)(d — 3)z3

d=8: m=0.3,q=0.1

'The nonlinear curvature is
f-(p<pm) too strong and the space

becomes compact.

 No asymptotic' AdS

region,

"« No" proper' BH with

“standard’ asymptotics.



Black holes

as thermodynamic objects

Energy E < M Mass

Temperature 1 Surface Gravity

e

Entropy § <« Horizon Area

K
dE = TdS |- PdV |+ work terms < dM = gdA + QdJ + ®dQ

Mass of a black hole is interpreted as the enthalpy of spacetime.

oM oM
d—3)M = (d - 2—A 2—A
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2nd-order Lovelock

Gauss — Bonnet

The existence of a tri]Ij)le oint in d = 6 (charged BHs) is
an exceptional case that has no counterpart in higher
dimensions.

0.09 1 p
K = ]_ Critical point 1
Two critical
points and a
triple point
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SMALL BH

INTERMEDIATE BH
Critical point 2

0.08-
Triple point
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The first order phase transition in the left low corner terminates

at [0; O].




Dymnamical Cosmological [1510.02472
: (A. Karch) !

: ] ' ‘ t 1404.5982 .
constant: some implications (o Soson) |

o Effective theory of non constant Lambda (inflation, quantum
fluctuations)

e Isoperimetric inequalities (Conjecture for AdS Black Holes):
“For a"black hole of given thermodynamic volume V, the
entropy is maximised for Schwarzschild-AdS”

|Ref. ArXiv:1012.2888]

 Consistency between First law and Smarr formula

o Thermodynamic machinery for study black holes phase

transitions.

« Holographic Black Hole Chemistry
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3™ Order Lovelock

Isolated critical point

A special case occurs when the parameter takes the value

a =3

e The system can be solved analytically

o A special isolated critical point characterized by non-
standard critical exponents in the phase diagram of
hyperbolic vacuum black holes.

~

a=0, B=1, 7=2, §6=3

o In the Gibbs free energy: two swallowtails emerge, giving
rise to two first-order phase transitions between small and

large black holes.




Conclusions

'The thermodynamic behaviour of the BB in Lovelock theory is

universal:

o it does not depend on the higher order curvature terms

o only on the Einstein-Hilbert term, A and the matter fields
content (in our case the EM field).

Consistently with the geometrical and thermodynamic picture,

e universality of 77/s is lost in the UV but is restored in the IR

o possible existence of bounds lower than the KSS remains still
open.

D=6 GB is the only dimension that admits triple points for
charged BH

o For special tuned Lovelock couplings in the hyperbolic case a
new type of isolated critical point, characterized by new critical

exponents cmerge.






Cosmological constant

& its conjugate variable

Kastor, Ray, and Traschen, Enthalpy and the Mechanics of AdSBlack Holes, Class.
Quant. Grav. 26 (2009) 195011, [arXiv:0904.2765].

o Identify: the cosmological constant with a thermodynamic

pressure ~
A 870

8’7TGN ~ 167TGN

o Calculate its conjugate quantity, the “thermodynamic volume” of
the black hole using the extended first law (Smarr formula):

(d—3)M = (d - 2)TS — 2PV

P =

(k) _.d—1
Schwarzschild: V = _\TJ(U) _ Ed—QTWL
i d—1
V= _nrs . 2k
- T® = 167Gy [J(d—m)T®, k> 2

n=3
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