Analog Hawking radiation in Bose-Einstein condensates

Nicolas Pavloff

LPTMS, CNRS, Univ. Paris Sud, Université Paris-Saclay

II FLAG Meeting june 2016

I. Carusotto

A. Recati

P.-É. Larré

A. Kamchatnov

D. Boiron

S. Fabbri

C. Westbrook

quasi-1D condensate longitudinal size $\sim 10^2 \mu$ m transverse size $\sim 1 \mu$ m

Guerin et al., Phys. Rev. Lett. (2006)

harmonic radial confinement :

$$V_{\perp}(ec{r}_{\perp})=rac{1}{2}\,m\,\omega_{\perp}^2r_{\perp}^2$$

 \rightarrow **1D model** : $\psi(x, t)$

Analogous Hawking radiation

gravitational black hole

Hawking radiation 75'

How to form a sonic horizon ?

The profile in the region of the horizon only depends on v_u/c_u , but not of the initial profile. No hair theorem^a?

^aF. Michel, R. Parentani, R. Zegers, Phys. Rev. D (2016)

How to form a sonic horizon ?

Soliton train in the upstream plateau... experimental problem ?

Density correlations

Hawking radiation in the u|out channel. Equivalent to a black body radiation of temperature $T_H \simeq 10\% \mu$

★ example of induced correlation:

 $x = (v_d + c_d)t$ correlates with $x' = (v_u - c_u)t$

 \star affects the density correlation pattern $\langle : n(x)n(x'): \rangle$

Larré et al., Phys. Rev. A (2012)

density profile near the horizon \simeq waterfall $n_u/n_d = 5.55 5.55$ $c_u/c_d = 2.4 2.36$ $V_u/c_u = 0.375 0.4245$, $V_d/c_d = 3.25 5.55$

 $T_H = 1.0 \text{ nK}$ $T_H/\mu = 0.4$?

T = 0, adiabatic opening of the trap

Boiron et al. PRL (2015)

Two body momentum distribution in the presence of a horizon

p, q: absolute momenta in units of ξ_u^{-1}

 $\begin{array}{l} \text{right plot: } g_2(p,q) \rightarrow \\ \text{where } g_2(p,q) = \frac{\langle : \hat{n}(p) \hat{n}(q) : \rangle}{\langle \hat{n}(p) \rangle \langle \hat{n}(q) \rangle} \end{array}$

$$k$$
 : momentum relative to the condensate
 $p = k + P_{(u/d)}$ where $P_{(u/d)} = mV_{(u/d)}$

T = 0 adiabatic opening

Boiron et al. PRL (2015)

without horizon: $g_2 \equiv 1$

Two body momentum distribution in the presence of a horizon

p, q: absolute momenta in units of ξ_u^{-1}

T = 0 adiabatic opening

Boiron et al. PRL (2015)

$$k$$
 : momentum relative to the condensate
 $p = k + P_{(u/d)}$ where $P_{(u/d)} = mV_{(u/d)}$

without horizon: $g_2 \equiv 1$

Violation of Cauchy-Schwarz inequality ($T \neq 0$)

C.-S. violation :
$$g_2(p,q)\Big|_{u_{\text{out}}-d2_{\text{out}}} > \sqrt{g_2(p,p)}\Big|_{u_{\text{out}}} \times g_2(q,q)\Big|_{d2_{\text{out}}} \equiv 2$$

Boiron et al. PRL (2015)

The NLS \leftrightarrow Gross-Pitaevskii eq. is a nonlinear quantum field eq. :

$$-\frac{\hbar^2}{2m}\partial_x^2\hat{\psi} + g\,\hat{\psi}^{\dagger}\hat{\psi}\,\hat{\psi} = i\,\hbar\,\partial_t\hat{\psi}\,,\quad\text{with}\quad \left[\hat{\psi}(x,t),\hat{\psi}^{\dagger}(y,t)\right] = \delta(x-y)\,.$$

BEC : macroscopic occupation of the lowest quantum state: $\hat{\psi}(x,t) = \underline{\psi}_{(0)}(x,t) + \hat{\phi}(x,t)$ (Bogoliubov 1947)

$\psi_{(0)}$: solution of the (classical) NLS
$\hat{\phi}$: solution of a linearized (quantum) eq.

makes it possible to consider vacuum fluctuations. In particular : **Hawking radiation** in a stationary, non uniform setting.

Bouchoule, Arzamasovs, Kheruntsyan, Gangardt, PRA (2012)

model configuration :

model configuration :

$$\begin{split} \hat{\phi}(\mathbf{x}) &= \mathrm{e}^{\mathrm{i}P_{(u/d)^{X}}} \int_{0}^{\infty} \frac{\mathrm{d}\omega}{\sqrt{2\pi}} \sum_{L \in \{U,D1\}} \left[u_{L}(\mathbf{x},\omega) \hat{\mathbf{a}}_{L}(\omega) + v_{L}^{*}(\mathbf{x},\omega) \hat{\mathbf{a}}_{L}^{\dagger}(\omega) \right] \\ &+ \mathrm{e}^{\mathrm{i}P_{(u/d)^{X}}} \int_{0}^{\Omega} \frac{\mathrm{d}\omega}{\sqrt{2\pi}} \left[u_{D2}(\mathbf{x},\omega) \hat{\mathbf{a}}_{D2}^{\dagger}(\omega) + v_{D2}^{*}(\mathbf{x},\omega) \hat{\mathbf{a}}_{D2}(\omega) \right]. \end{split}$$

• If
$$x \ll -\xi_u$$
: $u_U(x) = \mathcal{U}_{u|\mathrm{in}} \mathrm{e}^{\mathrm{i}q_{u|\mathrm{in}}x} + S_{uu} \mathcal{U}_{u|\mathrm{out}} \mathrm{e}^{\mathrm{i}q_{u|\mathrm{out}}x}$,
• If $x \gg \xi_d$: $u_U(x) = S_{d1,u} \mathcal{U}_{d1|\mathrm{out}} \mathrm{e}^{\mathrm{i}q_{d1|\mathrm{out}}x} + S_{d2,u} \mathcal{U}_{d2|\mathrm{out}} \mathrm{e}^{\mathrm{i}q_{d2|\mathrm{out}}x}$

adiabatic opening of the trap:
$$\begin{pmatrix} \mathcal{U}(\omega) \\ \mathcal{V}(\omega) \end{pmatrix}_{\text{mode}} \rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 or $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ for $d2|out$

ullet adiabaticity always violated for long wave-lengths, when $\omega \times \mathit{t_{\mathrm{char}}} \ll 1$

when
$$\hbar \omega_{\perp} \leq \mu$$
 :

Zaremba, PRA (1998) Stringari, PRA (1998) Fedichev & Shlyapnikov, PRA (2001) Tozzo & Dalfovo, PRA (2002) modified dispersion relation : $\omega_0^2(q) = c_{1d}^2 q^2 \left(1 - \frac{1}{48} (qR_\perp)^2 + \dots\right)$

new channels :

$$\omega_{n\geq 1}^2(q) = 2n(n+1)\omega_{\perp}^2 + \frac{1}{4}(qR_{\perp}\omega_{\perp})^2 + \dots$$

these new channels will be populated at T = 0

mass term \neq Klein-Gordon \rightarrow new "in" modes BECs offer interesting prospects to observe analogous Hawking radiation [Steinhauer, arXiv:1510.00621] general perspective : quantum effects with nonlinear matter waves

One- and two-body momentum distributions accessible by present day experimental techniques provide clear direct evidences

➡ of the occurrence of a sonic horizon.

- ► of the associated acoustic Hawking radiation.
- of the quantum nature of the Hawking process.
 - The signature of the quantum behavior persists even at temperatures larger than the chemical potential.

 $\langle ... \rangle \stackrel{def}{=} \mathsf{Tr}(\rho ...)$

$$egin{aligned} &\langle \hat{n}^2
angle &= \langle \hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger} \hat{a}
angle \ &= \langle \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a}
angle + \langle \hat{a}^{\dagger} 1 \hat{a}
angle \ &= \langle \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a}
angle + \langle \hat{n}
angle \end{aligned}$$

$$egin{aligned} 0 &\leq \langle \delta n^2
angle \stackrel{ ext{def}}{=} \langle \hat{n}^2
angle - \langle \hat{n}
angle^2 \ &= \underbrace{\langle \hat{a}^\dagger \hat{a}^\dagger \hat{a} \hat{a}
angle - \langle \hat{n}
angle^2}_{sign?} + \langle \hat{n}
angle \end{aligned}$$

 $\langle ... \rangle \stackrel{def}{=} \mathsf{Tr}(\rho ...)$

$$egin{aligned} &\langle \hat{n}^2
angle &= \langle \hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger} \hat{a}
angle \ &= \langle \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a}
angle + \langle \hat{a}^{\dagger} 1 \hat{a}
angle \ &= \langle \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a}
angle + \langle \hat{n}
angle \end{aligned}$$

$$egin{aligned} 0 &\leq \langle \delta n^2
angle \stackrel{def}{=} \langle \hat{n}^2
angle - \langle \hat{n}
angle^2 \ &= \underbrace{\langle \hat{a}^\dagger \hat{a}^\dagger \hat{a} \hat{a}
angle - \langle \hat{n}
angle^2}_{sign^7} + \langle \hat{n}
angle \end{aligned}$$

Cauchy-Schwarz: $|\langle \hat{\pmb{A}} \rangle|^2 \leq \langle \hat{\pmb{A}}^\dagger \hat{\pmb{A}} \rangle$

Hence	$ \langle \hat{a} \hat{a} angle ^2 \leq \langle \hat{a}^\dagger \hat{a}^\dagger \hat{a} \hat{a} angle$
But	$ \langle \hat{a}^{\dagger} \hat{a} angle ^2 \not\leq \langle \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a} angle$

 $\langle ... \rangle \stackrel{\text{def}}{=} \operatorname{Tr}(\rho ...)$

$$egin{aligned} &\langle \hat{n}^2
angle &= \langle \hat{a}^\dagger \hat{a} \hat{a}^\dagger \hat{a}
angle \ &= \langle \hat{a}^\dagger \hat{a}^\dagger \hat{a} \hat{a}
angle + \langle \hat{a}^\dagger \mathbf{1} \hat{a}
angle \ &= \langle \hat{a}^\dagger \hat{a}^\dagger \hat{a} \hat{a}
angle + \langle \hat{n}
angle \end{aligned}$$

$$egin{aligned} 0 &\leq \langle \delta n^2
angle \stackrel{def}{=} \langle \hat{n}^2
angle - \langle \hat{n}
angle^2 \ &= \underbrace{\langle \hat{a}^\dagger \hat{a}^\dagger \hat{a} \hat{a}
angle - \langle \hat{n}
angle^2}_{sign^7} + \langle \hat{n}
angle \end{aligned}$$

Cauchy-Schwarz: $|\langle \hat{A} \rangle|^2 \leq \langle \hat{A}^{\dagger} \hat{A} \rangle$

Hence	$ \langle \hat{a} \hat{a} angle ^2 \leq \langle \hat{a}^\dagger \hat{a}^\dagger \hat{a} \hat{a} angle$
But	$ \langle \hat{a}^{\dagger} \hat{a} angle ^2 \not\leq \langle \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a} angle$

stupid theoretical example

average over a number state: $\rho \equiv |n\rangle\langle n|$ $\langle \hat{a}\hat{a} \rangle^2 = 0$ $\langle \hat{a}^{\dagger}\hat{a}^{\dagger}\hat{a}\hat{a} \rangle = n(n-1)$ $\langle \hat{a}^{\dagger}\hat{a} \rangle^2 = n^2 \nleq \langle \hat{a}^{\dagger}\hat{a}^{\dagger}\hat{a}\hat{a} \rangle$ a number state is clearly sub-Poissonian ! $\langle ... \rangle \stackrel{\text{def}}{=} \operatorname{Tr}(\rho ...)$

$$egin{aligned} &\langle \hat{n}^2
angle &= \langle \hat{a}^\dagger \, \hat{a} \, \hat{a}^\dagger \, \hat{a} \, \hat{a}
angle \ &= \langle \hat{a}^\dagger \, \hat{a}^\dagger \, \hat{a}^\dagger \, \hat{a} \, \hat{a}
angle + \langle \hat{a}^\dagger \, 1 \, \hat{a}
angle \ &= \langle \hat{a}^\dagger \, \hat{a}^\dagger \, \hat{a} \, \hat{a}
angle + \langle \hat{n}
angle \end{aligned}$$

$$egin{aligned} 0 &\leq \langle \delta n^2
angle \stackrel{def}{=} \langle \hat{n}^2
angle - \langle \hat{n}
angle^2 \ &= \underbrace{\langle \hat{a}^\dagger \hat{a}^\dagger \hat{a} \hat{a}
angle - \langle \hat{n}
angle^2}_{sign?} + \langle \hat{n}
angle \end{aligned}$$

Cauchy-Schwarz: $|\langle \hat{A} \rangle|^2 \leq \langle \hat{A}^{\dagger} \hat{A} \rangle$

Hence	$ \langle \hat{a} \hat{a} angle ^2 \leq \langle \hat{a}^\dagger \hat{a}^\dagger \hat{a} \hat{a} angle$
But	$ \langle \hat{a}^{\dagger} \hat{a} angle ^2 \not\leq \langle \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a} angle$

stupid theoretical example

average over a number state: $\rho \equiv |n\rangle\langle n|$ $\langle \hat{a}\hat{a} \rangle^2 = 0$ $\langle \hat{a}^{\dagger}\hat{a}^{\dagger}\hat{a}\hat{a} \rangle = n(n-1)$ $\langle \hat{a}^{\dagger}\hat{a} \rangle^2 = n^2 \not\leq \langle \hat{a}^{\dagger}\hat{a}^{\dagger}\hat{a}\hat{a} \rangle$

a number state is clearly sub-Poissonian !

Violation of Cauchy-Schwarz inequality (δ peak $T \neq 0$)

$$\left|g_2(p,q)
ight|_{u_{
m out}-d2_{
m out}}> \left.\sqrt{g_2(p,p)}
ight|_{u_{
m out}} imes \left.g_2(q,q)
ight|_{d2_{
m out}}\equiv 2$$

