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Introduction Gravitational collapse and singularities

Gravitational collapse and singularities

Penrose and Hawking
Under reasonable conditions, collapse became inevatable once a trapped
surface forms.

The collapse give rise to a gravitational singularity

Is the singularity always covered by an event horizon?

Can naked singularities arise from gravitational collapse?

Cosmic Censorship Conjecture (CCC) - Penrose (1969)

The generic singularities arising in the gravitational collapse are always
covered by an event horizon.
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Classical Vaidya space-time Can naked singularities arise from gravitational collapse?

Gravitational collapse: Vaidya space-time

The metric of a spherically symmetric collapsing object is:

ds2 = −f (r , v) dv2 + 2 dv dr + r2 dΩ2 (1)

Where f (r , v) is given by:

f (r , v) = 1− 2G0 m(v)

r
(2)

The mass function m(v) depends on the advanced time v .
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Classical Vaidya space-time Can naked singularities arise from gravitational collapse?

In the Kuroda-Papapetrou model the mass function is:

m(v) =


0 v < 0
λv 0 ≤ v < v̄

m̄ v ≥ v̄

(3)

In this model, for λ ≤ 1
16G0

, a far away observer see a persistent naked
singularity .

Y. Kuroda, Prog. Theor. Phys. 72, 63 (1974)

A. Papapetrou, A random walk in relativity and cosmology. Hindustan Publishing Co.,
New Delhi, India (1985)
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Classical Vaidya space-time Can naked singularities arise from gravitational collapse?

Gravitational collapse in the generalized Vaidya space-time
Mkenyeleye, Goswami, Maharaj. Phys. Rev. D 90, 064034 (2014)

Which is the mathematical condition to have a naked singularity?
Which is its strength?

ds2 = −f (r , v) dv2 + 2 dv dr + r2 dΩ2 (4)

f (r , v) = 1− 2M(r , v)

r
(5)

We have to study the geodesic equation:

dv
dr

= 2
(
1− 2M(r , v)

r

)−1

(6)
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Classical Vaidya space-time Can naked singularities arise from gravitational collapse?

It is useful to write the geodesic equation as the following dynamical system:


dv(t)

dt = N(r , v) = 2 r

dr(t)
dt = D(r , v) = r − 2M(r , v)

(7)

Eigenvalues of the stability matrix J:

χ± =
1
2

(
TrJ ±

√
(TrJ)2 − 4 detJ

)
(8)

(TrJ)2 − 4 detJ ≥ 0 detJ > 0 ⇒ Node (naked singularity)

(TrJ)2 − 4 detJ < 0 ⇒ Spiral node (black hole)

A. Bonanno, B. Koch, A. Platania Gravitational collapse in the AS scenario 8 June 2016 6 / 20



Classical Vaidya space-time Can naked singularities arise from gravitational collapse?

The singularity “strength”

A singularity is said to be strong if an object falling into the singularity is
destroyed by the gravitational tidal forces. Otherwise it is called weak or
integrable (⇒ the space-time is extendable).

The strength of the singularity is given by:

S =
ṀFP X 2

FP

2
XFP ≡ lim

(r ,v)→FP

v(r)

r
(9)

The singularity is strong if S > 0, viceversa it is integrable.

Mkenyeleye, Goswami, Maharaj. Phys. Rev. D 90, 064034 (2014)
Strokov, Lukash, Mikheeva. Int. J. Mod. Phys. A 31, 1641018 (2016)
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Asymptotic Safety and the improved Vaidya space-time Kuroda-Papapetrou RG-improved model

Kuroda-Papapetrou RG-improved model

The classical Vaidya space-time is: ds2 = −fc(r , v) dv2 + 2 dv dr + r2 dΩ2

fc(r , v) = 1− 2m(v)G0

r
(10)

Asymptotic Safety and running Newton constant
By using the exact RG:

G (k) =
G0

1 + ω G0 k2 (11)

Where ω = 1/g∗ and k is the infrared cutoff scale.

M. Reuter, Phys. Rev. D 57, 971 (1998)
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Asymptotic Safety and the improved Vaidya space-time Kuroda-Papapetrou RG-improved model

Metric improvement

The idea is to study the gravitational collapse arising from the RG-improved
Vaidya metric:

fc(r , v) −→ fq(r , v) = 1− 2m(v)

r

G0

1 + ω G0 [k(r)]2
(12)

The question is: Which is, in this case, the correct cutoff identification?

The best choice is to relate k(r) with the energy density of a null free
falling observer:

k(r) ≡ ξ 4
√
ρ(r , v) = ξ

4

√
ṁ(v)

4πr2 (13)

Babic, Guberina, Horvat, Stefancic. Phys.Rev. D71 (2005) 124041
Bonanno, Esposito, Rubano, Scudellaro. Class. Quant. Grav. 23 (2006) 3103
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Asymptotic Safety and the improved Vaidya space-time Kuroda-Papapetrou RG-improved model

By using this cutoff identification, and assuming m(v) = λ v :

fq(r , v) = 1− 2λG0 v

r + α
√
λ

α =
ξ2 G0√
4π g∗

(14)

Compare:

fc(r , v) = 1− 2λG0 v

r
(15)

The effect of a running Newton constant is to produce a shift to r(v):

r(v) −→ r(v) + α
√
λ (16)
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Asymptotic Safety and the improved Vaidya space-time Kuroda-Papapetrou RG-improved model

General solution for the outgoing radial null geodesics

Exact analytic solutions:

Log
[
2λG0v

2 − (r(v) + α
√
λ)v + 2 (r(v) + α

√
λ)2
]

+

+
−2ArcTan

[
v−4 [ r(v)+α

√
λ ]

v
√
−1+16λG0

]
√
−1 + 16λG0

= C (17)

Observations:

The “critical value” is now λc >
1

16G0

The improved geodesic equation admit the constant solutions:

r±(v) = −α
√
λ+ µ± v µ± =

1
4

(
1±

√
1− 16λG0

)
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Asymptotic Safety and the improved Vaidya space-time Kuroda-Papapetrou RG-improved model

λ > λc The singularity is behind the horizon: BH
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Asymptotic Safety and the improved Vaidya space-time Kuroda-Papapetrou RG-improved model

λ ≤ λc Naked singularity
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Asymptotic Safety and the improved Vaidya space-time Kuroda-Papapetrou RG-improved model

On the nature of the singularity

Eingeinvalues of the stability matrix J: χ± = 1
2

(
TrJ ±

√
(TrJ)2 − 4 detJ

)
Classical Kuroda-Papapetrou model:

TrJ = 1 detJ = 4λG0 ⇒ χ± = 1
2

(
1±
√
1− 16λG0

)
The origin (0, 0) is a naked singularity if λ ≤ 1

16G0
, S > 0

Improved Kuroda-Papapetrou model:

TrJ = 1− 2λv0 G0
α
√
λ

detJ ∝ G (r)]r→0 = 0 Fixed Points line

Strength: S ∝ G (0) = 0 Integrable!

There is no dependence on the critical value λc
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Asymptotic Safety and the improved Vaidya space-time Kuroda-Papapetrou RG-improved model

Non-linearity effects

Look again at the full improved geodesic equation, written as:
dv(t)

dt = 2 r(t)

dr(t)
dt = r(t)− 2λG0 v(t) r(t)

r(t)+α
√
λ

(18)

Where:

α = ξ2 G0√
4π g∗

∝ M−2
pl (19)

Region far from the singularity r = 0

r � α
√
λ ⇔ [k(r)]2 � M2

pl classical region

We found that the NL effects (near classical region) restore the
λc-dependence.
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Conclusions Conclusions

Conclusions

We studied a RG-improved Kuroda-Papapetrou model;

We found that the only effect of a running Newton constant is to
turn a strong naked singularity into a line of integrable singularities;

The space-time is then extandable beyond r = 0, but the Cosmic
Censorship Hypothesis is violated;

The presence of the limiting value λc is a purely classical effect: the
formation of naked singularities in the KP model is due to the
gravitational collapse dynamics in the classical region.
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Conclusions Conclusions

Thanks for your attention
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Conclusions Conclusions

Which is the behavior of the trajectories near the FP line?

For a given fixed point (0, v0), the characteristic directions are:

r = 0 ←→ χ− = 0 (marginal) (20)

v = v0 +
2 r

χ+(v0)
←→ χ+(v0) ≡ TrJ = 1− 2λv0 G0

α
√
λ

(21)

Non-marginal direction:

positive slope 2
χ+(v0)

> 0 ⇔ Repulsive direction

negative slope 2
χ+(v0)

< 0 ⇔ Attractive direction

inversion point v̄0 = α
√
λ

2λG0
⇔ Apparent horizon
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Conclusions Conclusions

Characteristic directions “phase diagram”
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Conclusions Conclusions

For example, if λ > λc
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