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Gravitational Wave Observations and Fundamental Physics
Virgo, LISA, Einstein Telescope, TEONGRAV
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The Gravitational Wave Spectrum Unveiling the Universe and the nature of space and time in
extreme conditions of curvature and gravity at different scales
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Understanding Neutron
Stars Mergers

Gravitational Wave Astronomy @ Trento

Data analysis methods developed at Trento are
focused on searching and reconstructing GW
transients without relying on morphological

Historic signal of
the first GW event \/ Interpretation of present and future GW

// detections requires sophisticated source models,

models. ‘ including:
Hanford Livingston Virgo e Dynamical spacetimes

The ears-wide-open searches are discovery tools | | | e Relativistic radiation hydrodynamics;
that achieved relevant successes as the earliest | \[ | | L AL L e Detailed microphysics, with nuclear EoS and
identification of neutrinos.
e GW150914, the first direct observation of a GW
e GW190521, the first direct observation of a

black hole in the intermediate mass range rest mass density g cm™

107 109 104 1013

(between stellar mass and supermassive)

Our data-driven reconstruction of e
signals is systematically used to check if
. the detected GWSs are consistent with
the models based on General Relativity.
We are testing the nature of compact
" . objects, aiming at
| - b ® |nvestigating the nature of space
close to the event horizon, down to

200 km

Disk remnant profile from a BNS merger,
from Camilletti et al, PRD accepted (2024 )

l Planck-scale physics
e Studying the Equation of State of Some of our goals from neutron star merger
| . s T matter in Neutron Stars modeling:
I ——— . - e Remnant fate and dependence on the
— ——— microphysics;
® NR-informed GW waveforms for inspiral and
high-frequency post-merger emission
A Glimpse into the Future
Fundamental questions that LISA and next- - 10°
generation detectors (AdV+ & ET) could answer: 10-14
e Gravitation MBHE Mg = 10"Mo 2t 2.3 100
O Is General Relativity the correct theory of 107 4 \MBHB Moo — 105 M, at z = 3

Gravitation? .\\MBHB P 10¢

O What is the true nature of black holes?

® Nuclear physics & quark-gluon plasma 102
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10-20
o What is the equation of state of neutron *\
stars? 10-22 4 —— LISA \\GW150914 10°
O What is the explosion mechanism of i relescone
supernovae? Lo-2 - Galacic bacground 10-2
° Cosmology and particle physics — — - — -
o What is dark matter? Frequency [Hz] N |
O What is dark energy? Multiband detections between LISA and ground detectors are ey 0
O How did supermassive BHs form? possible. Ground and space observatories are at the same Post GW sianal BNS
o Can we probe the Big Bang through the time complementary and synergic (they see the same sources BOS -rl:).erg e; 220;’%’;3 13f g merger, from
stochastic gravitational background? at different inspiral phases). reschi et ai, :
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